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A B S T R A C T

Accurately simulating Additive Manufacturing (AM) processes is useful to predict
printing failures and test 3D printing without wasting precious resources, both in terms
of time and material. In AM the object to be fabricated is first cut into a set of slices
aligned with the build direction, and then printed, depositing or solidifying material one
layer on top of the other. To guarantee accurate simulations, it is therefore necessary to
encode the temporal evolution of the shape to be printed within the simulation domain.
We introduce slice2mesh, to the best of our knowledge the first software capable of
turning a sliced object directly into a volumetric mesh. Our tool inputs a set of slices
and produces a tetrahedral mesh that endows each slice in its connectivity. An accurate
representation of the simulation domain at any time during the print can therefore be
easily obtained by filtering out the slices yet to be processed. slice2mesh also fea-
tures a flexible mesh generation system for external supports, and allows the user to
trade accuracy for simplicity by producing approximate simulation domains obtained
by filtering the object in slice space.

c© 2019 Elsevier B.V. All rights reserved.

1. Introduction1

Additive manufacturing (AM) enables the fabrication of a2

three-dimensional object by depositing successive layers of ma-3

terial one on top of the other. The process starts by cutting the4

object with a collection of planes orthogonal to the build direc-5

tion, defining a set of 2D cross sections (or slices). The machine6

tool paths along which the printer will deposit or solidify mate-7

rial are then computed, translated into machine code, and trans-8

mitted to the 3D printer for the actual fabrication. For indus-9

trial printers the computation of the tool paths can be extremely10

complex and machine dependent. Therefore, these printers usu-11

ally input a file containing the slices and calculate machine tool12

paths in a computer directly installed into the machine. A pop-13

ular format to represent sliced data is the Common Layer Inter-14

face (CLI), which defines each slice as a set of piece-wise linear15

curves.16

In AM the 3D printer is oblivious of the original shape. The17

fabrication is completely based on the geometry of the slices.18

In other words, the printer fabricates a proxy shape obtained by 19

extruding the geometry of each slice along the build direction 20

by an amount corresponding to the local layer thickness. The 21

accuracy of the proxy depends on many factors, such as the 22

build direction and the spacing between adjacent slices. The 23

optimization of these parameters has been the subject of exten- 24

sive research in recent years (see [1] and references therein). 25

Despite the huge amount of research in the field, preparing 26

an object for fabrication with AM is still a trial-and-error oper- 27

ation in which the user experience plays a fundamental role [2]. 28

Poor quality objects and even printing failures occur quite of- 29

ten for inexperienced users, increasing the production cost and 30

limiting the scalability of 3D printing. Simulating fabrication 31

processes provides an efficient way to study mitigation strate- 32

gies to prevent failures [3, 4] and possibly damages induced by 33

a misuse of the printer. Furthermore, simulation allows to pre- 34

dict the ultimate product quality. 35

In this paper we focus on the generation of proper domains to 36

simulate additive fabrication. From a meshing perspective the 37
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Fandisk

Fig. 1. slice2mesh addresses mesh generation for the simulation of AM processes, converting sliced data (left) directly into a volumetric mesh (middle)
which endows in its connectivity the temporal evolution of the object to be printed, as shown in the cut through orthographic view on the right, where the
horizontal mesh edges encode the geometry of the input slices.

simulation poses three main challenges:1

• Domain: the shape evolves in time, growing one layer2

at a time. To accurately simulate AM processes it is3

therefore necessary to generate a mesh that embeds in its4

connectivity the temporal evolution of the object. Doing5

so, a faithful representation of the domain at any time6

during the simulation can be obtained by simply filtering7

out all the mesh elements belonging to the slices yet to be8

processed. Notice that in principle one could also decide9

to re-mesh the domain at each time step, but this solution10

can be dramatically expensive from a computational11

standpoint;12

13

• Refinement: especially in metal printing, the areas just hit14

by the laser reach very high temperatures, producing huge15

thermal gradients. In order to accurately catch the thermal16

and mechanical phenomena it is therefore important to be17

able to locally refine the mesh to improve the accuracy of18

the simulation;19

20

• Supports: professional software such as Materialise Mag-21

ics [5] define the support structures used to sustain the part22

during fabrication directly in the CLI file, in the form of23

piece-wise linear 1D curves. An accurate digital represen-24

tation of the supports never exists into the machine, but25

rather supports are directly created by asking the printer26

to deposit material along these curves. Their ultimate size27

and shape will therefore depend on the machine precision28

(e.g., the diameter of the laser beam for SLS/SLM ma-29

chines, or the thickness of the plastic filament for FDM30

printers). Support structures have a fundamental role in31

3D printing, therefore a method to synthesize their shape32

and incorporate them into the simulation domain must be33

devised.34

Current AM simulation approaches rely on standard mesh-35

ing algorithms which do not specifically address these issues.36

Approximate domains such as rectilinear grids (i.e. voxels) are37

popular, but they need to be very dense to conform with the38

mesh slices and hardly support local refinement. Supports can39

be simulated assuming they are one voxel thick, but this as- 40

sumption may be too rough and lead to inaccurate results. This 41

is particularly true in metal printing, where the principal func- 42

tion of supports is to dissipate heat, and therefore small varia- 43

tions of their thickness may heavily affect the final result. 44

We present slice2mesh, to the best of our knowledge the 45

first software capable of turning a sliced object directly into a 46

volumetric mesh. Our meshing strategy starts with a CLI file 47

and generates a tetrahedral mesh which embeds in its connec- 48

tivity all the slices contained in such file. In other words, any 49

tetrahedral element is fully contained in a single slice, with no 50

element spanning across adjacent slices (Figure 1). This feature 51

enables for an easy and efficient extraction of the simulation do- 52

main at any time during the fabrication process (Figure 2). Fur- 53

thermore, being unstructured the mesh can be locally refined to 54

improve the simulation accuracy. 55

We incorporated in our tool also practical features such as 56

the meshing of support structures (Figure 17) and the genera- 57

tion of approximate simulation domains with lower elements 58

count, obtained by filtering the object in slice space (Fig- 59

ures 13 and 16). This is very important to control the trade-off 60

between simulation accuracy and running times. Indeed, high 61

fidelity printers may use very thin slices with layer thicknesses 62

in the order of microns, leading to meshes with millions of ele- 63

ments that can make the simulation prohibitive from a compu- 64

tational point of view. To this end, working in slice space makes 65

our software independent from the complexity of the object to 66

be printed, resulting in a robust simplification strategy. 67

In this article we discuss both technical solutions and algo- 68

rithms at the basis of slice2mesh. An early version of this pa- 69

per was originally presented at the conference Smart Tools and 70

Apps for Graphics 2018 [6]. The original article was mainly 71

focused on the generation of a Piece-wise Linear Complex that 72

describes the structure of the tetrahedral mesh, providing lit- 73

tle details on the actual mesh generation. In particular, the 74

tool was limited in its applicability due to some over refine- 75

ment that was triggered by tiny features present in the PLC. 76

In this extended version we present a thorough study on the 77

tetrahedralization step, analyzing in depth the performances of 78

two popular mesh generation tools, Tetgen [7] and TetWild [8], 79

and discussing their pros and cons when used within our frame- 80
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Fig. 2. Slice by slice growing sequence of the simulation domain obtained with slice2mesh. The outside of the mesh is white, the interior yellow.
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Fig. 3. Detailed structure of the Piece-wise Linear Complex (PLC) we cre-
ate and eventually fill with tetrahedra. Incorporating both the boundary
and the inner slices into the PLC produces non-manifold edges which are
not supported by variational tetrahedralization approaches such as [9].

work. This allowed us to improve on our previous results, pro-1

ducing ready to use simulation meshes for all the models we2

tested. As for the previous version, slice2mesh is publicly3

available on GitHub, and can be accessed by cloning the repo4

https://github.com/mlivesu/slice2mesh.5

2. Related works6

Our work relates to both volumetric mesh generation and7

FEM analysis of AM processes. We review here the most rele-8

vant works in the aforementioned research areas.9

2.1. Volume mesh generation10

Scientific literature offers a variety of methods for both hexa-11

hedral [10, 11, 12] and mixed element [13, 14] meshing. How-12

ever, these methods do not permit to control the interior of the13

volume, therefore cannot be used to generate a mesh that con-14

forms with both the boundary and the slices of a 3D printed ob-15

ject. Furthermore, they act like re-meshing tools, meaning that16

they are not able to turn a surface mesh directly into a volumet- 17

ric one, but rather rely on a temporary volumetric discretization 18

of the shape (typically a tetrahedral mesh). 19

For the tetrahedral meshing case, variational and Voronoi- 20

based are the most popular approaches. Variational methods 21

like [9] require the input to be a 2-manifold. Being conforming 22

with both the boundary and the slices imposes the presence of 23

non-manifold edges (Figure 3), therefore such methods cannot 24

be used in this context. Voronoi-based methods such as Tetgen 25

[7] can mesh any Piece-wise Linear Complex (PLC), possibly 26

containing non-manifold edges. In the last step of our approach 27

we use Tetgen to turn our PLC into a full tetrahedral mesh. 28

Besides manifoldness, a surface mesh must satisfy other im- 29

portant requirements to be turned into a volumetric one: it must 30

be watertight (i.e., it must fully enclose a solid), and it must not 31

contain self-intersections. Although mesh repairing [15, 16, 17] 32

can alleviate these defects, most of the repairing tools available 33

do not support non-manifoldness. Furthermore, mesh repairing 34

often uses rational arithmetic and may be a huge bottleneck for 35

the performances of the shape generation pipeline. The piece- 36

wise linear complexes generated with our method are guaran- 37

teed to enclose a solid and do not contain self-intersections. 38

As such, they do not need to be repaired and can be directly 39

turned into tetrahedral meshes using Tetgen [7] or similar tools. 40

Recent research in the field (e.g., TetWild [8]) has shown that 41

solid meshes can be also constructed starting from defective in- 42

puts that do not fulfill the all these requirements. In this revised 43

version we test the capabilities of TetWild to overcome over- 44

refinement issues triggered by tiny details that may be present 45

in our PLCs. 46

2.2. Simulation of AM processes 47

The simulation of AM processes has fostered a lot of research 48

in recent years, especially from the FEM community. The ma- 49

jority of the methods in literature focuses on the simulation of 50

https://github.com/mlivesu/slice2mesh
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heat dissipation and residual stresses, two major issues for cur-1

rent 3D printing technologies. Here we summarize the current2

trends in terms of mesh generation for the simulation of AM3

processes; we point the reader to [18] for a more comprehen-4

sive survey.5

Uniform size meshing. Matsumoto and colleagues [19] pro-6

posed a layer by layer simulation performed on a regular 2D7

grid. In heat diffusion the major temperature gradients are those8

developed in the build direction, between the top layer and the9

substrate. As a result, 3D models should be preferred to 2D10

ones for obtaining accurate results [18], even for the simulation11

of residual stresses [20]. Other methods employ discrete rods12

to simulate the plastic filament of FDM [21] or voxel-based13

approaches, performing the simulation on regular 3D lattices14

[22, 23, 24, 25, 26, 27]. Although the horizontal component of15

the lattice can be forced to align with the slices (if a uniform16

strategy is used), too thin layers may produce excessively dense17

voxel grids, leading to computationally expensive simulations.18

Furthermore, voxelized objects do not faithfully reproduce the19

outer boundary of the prototype and may miss tiny or off-axis20

features, negatively affecting the result of the simulation.21

Local refinement. In Selective Laser Melting (SLM), Selec-22

tive Laser Sintering (SLS) and many others AM processes the23

biggest thermal gradients are localized nearby the melting pool.24

In order to better catch this behaviour and keep the simula-25

tion cost affordable recent methods exploit local mesh refine-26

ment. Many authors employ rather simple hexahedral meshes27

[28, 29, 30, 31, 32], with finer elements nearby the melting pool28

(where the powder is molten by the heat source) and coarser el-29

ements elsewhere (where the thermal gradients are very low).30

Deposition layers are usually 1 element tall and 2 elements31

wide, thus generating elements being approximately equal to32

1
4 of the laser diameter, as suggested in [29]. Both [33] and [34]33

use a full structured adaptive hexahedral mesh with T-junctions.34

This mesh has the same limitations of voxels-based approaches.35

Furthermore, note that additional constraints on the solution36

values should be added on T-nodes so as to guarantee the conti-37

nuity of the solution. Liu and colleagues [35] proposed a micro38

scale tetrahedral mesh with consideration of powder arrange-39

ment. They experimented with a single layer sintering with the40

sample dimension of 6.13mm × 6.08mm × 1.54mm, which al-41

ready counts 60K tetrahedra. The authors do not discuss how to42

adapt their meshing to general 3D shapes and, even if so, mesh-43

ing the entire domain according to such strategy would lead44

to extremely dense meshes, making the simulation prohibitive45

from a computational point of view. Zhang and colleagues [36]46

use a mixed element mesh, with the top layer meshed as a reg-47

ular array of hexahedra and the stack of layers below meshed48

with a progressively coarser tetrahedral mesh. Since the mesh49

is not conforming with the previous layers, a new mesh needs50

be generated for each slice.51

Summarizing, none of the meshing methods presented in52

Section 2.1 supports the generation of volumetric meshes which53

are specific for the simulation of AM processes and encode54

in their interior the slice geometry. Additionally, all the set-55

tings described in Section 2.2 either rely on manually generated56

meshes or are too simple to scale on complex shapes. With 57

slice2mesh we offer a meshing method that successfully ad- 58

dresses all these shortcomings. 59

3. Anatomy of a CLI file 60

The Common Layer Interface format [37] serves to encode 61

sliced data for 3D printers and is supported both from commer- 62

cial [5] and academic software. CLI files are accepted by a 63

variety of desktop and industrial 3D printing machines (e.g. the 64

EOS M270 laser sintering metal printer). We briefly explain 65

here how data is organized and what data we extract for our 66

purposes. 67

The header presents global information, such as the number 68

of slices encoded in the file and the metric unit in which coor- 69

dinates are expressed. Slices are then listed as a sequence of 70

layers. Each layer begins with the keyword $$LAYER and is 71

followed by a sequence of hatches ($$HATCHES) and poly- 72

lines ($$POLYLINE). Hatches are sets of independent straight 73

lines, each defined by one start and one end point. The purpose 74

of hatches is to define both external structures and the machine 75

tool paths along which the printer deposits or solidifies mate- 76

rial. Polylines can be of three types: closed CCW, closed CW 77

or open. Closed CCW polylines are used to represent the ex- 78

ternal boundaries of the slice. Closed CW polylines are used to 79

represent the internal boundaries of the slice (i.e. holes). Open 80

polylines are similar to hatches and can be used for the same 81

purposes. The only difference is that hatches are interpreted 82

as disconnect segments, whereas open polylines are line strips 83

(the endpoint of the current edge is also the start point of the 84

subsequent one). In our tool we rely on CinoLib [38] for CLI 85

processing, which for simplicity assumes that hatches are used 86

only for machine toolpaths, and open polylines only for exter- 87

nal supports. We therefore read from the file only polylines 88

data, and this is the actual input slice2mesh uses for mesh 89

generation. 90

4. Method 91

We input a CLI file containing a set of 2D slices and (op- 92

tionally) a thickening radius for support structures; we output 93

a simulation ready discrete domain in the form of a tetrahedral 94

mesh. In case no thickening radius is provided, the support 95

structures contained in the CLI file will not be included in the 96

output mesh. 97

The algorithm works in two steps. The goal of the first step 98

is to create a Piece-wise Linear Complex (PLC) that encodes 99

both the outer and inner structure of the simulation domain. On 100

the outside, the PLC will conform to the input slices, exposing 101

the typical staircase effect produced by the slice extrusion (Fig- 102

ure 4). On the inside, the PLC will contain the geometry of the 103

slices, so as to incorporate the temporal evolution of the simu- 104

lation domain (Figure 3). In the second step, the PLC is filled 105

with tetrahedral elements to produce the output mesh. 106

The first step is based on novel ideas described in Section 5. 107

For the second step we rely on off-the-shelf third party software 108

(i.e., Tetgen [7]) to turn our PLC into a tetrahedral mesh. 109
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Pyramid

Fig. 4. Slicing a flat surface misaligned with the build direction creates
the staircase approximation error typical of additive manufacturing. The
staircase effect is lower for nearly vertical surfaces w.r.t. the build direc-
tion, and becomes much higher for nearly horizontal surfaces [1].

5. Generation of the PLC1

The PLC generation is based on the idea of lifting vertices2

and edges of each slice one layer above, splitting edges to re-3

solve intersections wherever necessary. Note that, even in ab-4

sence of intersections, naively duplicating each slice and lifting5

it to the layer above would double the number of vertices and6

edges, resulting in a PLC where each thickened slice is discon-7

nected from the others (Figure 5). As an example, the reader8

may consider a slicing composed of a stack of perfectly aligned9

quads. When lifted, each quad should be aware that it is a copy10

of an already existing quad, and no additional vertices should11

be added in the PLC.12

We propose here a method which is able to address these13

issues and produce a correct PLC. Our approach is based on14

four steps. We first thicken the support structures, converting15

1D lines to 2D polygons (Section 5.1). Then, we pre-compute16

all the lifting information and store it in a data structure (Sec-17

tion 5.2). We eventually proceed with the meshing of the PLC,18

which is composed of two types of elements: triangles aligned19

with the build direction (Section 5.3), and triangles that are or-20

thogonal with respect to the build direction (Section 5.4).21

5.1. Thickening of external supports22

The open 1D curves representing external supports must be23

thickened before triangulation and require special treatment.24

We thicken them by applying the buffering algorithm imple-25

mented in the Boost Polygon Library (Figure 6). Note that26

many popular patterns for support structures are based on in-27

tersecting lines (e.g. lattices [1]). Furthermore, depending on28

the thickening radius, supports may also intersect other poly-29

gons on the same slice. A union of all the thickened lines and30

polygons must therefore be computed to resolve intersections31

(Figure 7). We do this using the Boost Polygon Library, which32

offers boolean facilities for curves and polygons. Note that,33

from this point on, it is impossible to distinguish between the34

sliced object and its support structures: all we have is a set of35

closed curves representing the outer and inner (holes) profile of36

2D polygons. We eventually sanitize polygons, removing all37

the degenerate or quasi-degenerate edges that may have been38

created during boolean operations. We do this by using the39

Douglas-Peucker simplification algorithm [39], using 1% of the40

thickening radius as maximum deviation distance. In our exper-41

iments we observed that this latter simplification is fundamental42

to avoid failures and corner cases (e.g. computing intersections 43

between degenerate edges). 44

5.2. Pre-processing 45

To facilitate processing we pre-compute all the intersection 46

data and store it in a data structure to have it ready when mesh- 47

ing the PLC. We test for intersections using Shewchuck’s pred- 48

icates [40], thus ensuring the necessary numerical robustness. 49

We initialize V as an array containing all the slice vertices, 50

and a E as an array containing all the edges. Edge endpoints in 51

E are indexed with respect to the vertices in V . Ideally, at the 52

end of the pre-processing we would like to have an updated ver- 53

sion of V and E such that: V contains all and only the vertices 54

of the PLC, and for each edge e ∈ E we know 55

• what are the ids of its lifted endpoints (they may be vertices 56

of the slice above, or newly generated vertices appended in 57

V); 58

• how many edges from the slice above intersect the lifted 59

copy of e (and where); 60

• how many edges lifted from the slice below intersect e (and 61

where). 62

We obtain this information with a progressive approach, where 63

we process one edge at a time. We lift each edge to the next 64

slice, and we test it against all the edges in such slice. The 65

complete procedure is given in Algorithm 1. A simplified 2D 66

illustration can be found in Figure 8. 67

5.3. Horizontal meshing 68

With all the lifting data pre-computed, we can easily proceed 69

with the generation of the PLC. Here we describe how to gen- 70

erate its horizontal facets, that is, the ones that are aligned with 71

the build direction. We will complete the PLC with its vertical 72

facets in the subsequent section. 73

Horizontal meshing is local w.r.t. each slice and the slice 74

immediately below (if any). For each slice si, we first go 75

through each of its edges e ⊂ E, and split it at any of the in- 76

tersection points found in pre-processing. This generates n + 1 77

intersection-free sub-edges, where n is the number of intersec- 78

tion points detected in pre-processing. We augment the edge 79

set of slice si by adding the lifted images of edges e′ ⊂ E in 80

the slice below si−1, which we also split at their intersection 81

points. Note that processing si and si−1 separately may produce 82

duplicated edges (e.g. if the slices perfectly overlap). We en- 83

code edges in a symbolical way (as pairs of vertex ids), thus 84

avoiding the generation of duplicated entities. 85

We eventually mesh the slice si by generating a Constrained 86

Delaunay Triangulation (CDT) of the so generated set of ver- 87

tices and unique intersection-free edges, using the Triangle [41] 88

library. Triangle first constructs a CDT of the convex hull of the 89

input set, and then removes the unnecessary triangles proceed- 90

ing from the outside towards the interior until the input edges 91

are revealed. Note that internal holes will be also filled with 92

triangles. To clear holes we therefore filter the triangle list, dis- 93

carding elements that do not project inside si or si−1. Triangles 94
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Fig. 5. Extruding each slice along the building direction (left) by an amount corresponding to the local layer thickness produces a digital copy of the object
to be printed. If this process is performed locally, each extruded slice will be disconnected from its adjacent slices, thus generating a non-conforming mesh
that cannot be used to produce a volumetric discretization of the domain (middle). Our method is guaranteed to produce a conforming Piece-wise Linear
Complex (PLC) that can be turned into a valid simulation domain with any off-the-shelf volumetric mesher available (right).

Fig. 6. Two different tetrahedral meshes of a T shape, obtained by using growing thicknesses for supports structures. Supports are often seen by the printer
as 1D entities, and their fabricated size depends on hardware (e.g. laser beam or filament diameter). slice2mesh can be tuned to generate simulation
domains specifically tailored for a particular hardware.

Fig. 7. Details on a slice of the Nugear (with linear supports). Thickening
1D support structures and converting them into polygons may generate
intersections with other polygons living in the same slice. We avoid inter-
sections by performing a boolean union of all the polygons in the slice.

are either completely inside or outside the slice, therefore this1

check can be done considering triangle centroids and perform-2

ing a point-in-polygon test. Repeating this procedure for each3

slice, we produce all the horizontal facets of the PLC.4

5.4. Vertical meshing5

Here we describe how to produce the PLC faces orthogonal6

to the build direction with a local, per edge, meshing strategy.7

Once again, we exploit the information pre-computed in Sec-8

tion 5.2.9

Given an edge e and its lifted copy e′, we define a quad hav-10

ing as bottom vertices the extrema of e and as top vertices their11

lifted image (the extrema of e′). The lower base of this quad is 12

split into as many sub-segments as the number of split points 13

computed for e. The same goes for the upper base, which is 14

split into as many sub-segments as the number of split points 15

computed for e′. Having this information, we can trivially tri- 16

angulate the resulting convex polygon starting from the bottom- 17

left corner and connecting it with all the split points of e′ plus 18

the top right corner, and starting from the top right corner and 19

connecting it with all the split points of e. The result of this 20

procedure is illustrated in the right part of Figure 8. Repeating 21

it for all the edges of all slices but the top one we produce all 22

the missing faces of the PLC, which is now ready for tetrahe- 23

dralization. 24

We point out that not all edges need to be split. For example, 25

consider an object with an internal spherical cavity, and con- 26

sider two consecutive slices that cut the cavity in its lower hemi- 27

sphere. In this case, the lower polygon representing the cavity 28

would be entirely contained in the upper polygon, its edges will 29

be simply replicated at the slice above without modifications, 30

and these replicated edges would bound the horizontal triangu- 31

lation of the upper slice. 32
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Slice s1

e0

e1 e2

e3

e0

e1 e2

e3

e0

e1 e2

e3

Step 1: for each edge of each 
slice si, make a copy of it and 
lift it to the slice above si+1 

Step 2: intersect each lifted edge
with all the  edges in si+1 , also 
merging coincident points (see oval)

Step 3: triangulate the resulting
“quads”, producing the vertical
facets of the PLC

Slice s0

Slice s2

Input: a set of slices s0 ... si ,
each one containing a set of 
edges e0 ...ej

e0

e1 e2

e3

Fig. 8. A schematic 2D representation of our edge lifting strategy. Each edge is lifted from its current slice to the slice above, and tested for intersection and
coincidence with all the edges in it. The resulting quad-like domains are eventually triangulated to produce the vertical facets of the PLC (right). Detected
intersections are marked with a red star, newly added vertices with a yellow circle.

6. Tetrahedralization1

To turn the PLC into a tetrahedral mesh we rely on exter-2

nal software. In our tests we found out that this operation can3

be extremely complex and result in a number of issues, such as4

crashes of the meshing tool, runs that last for days, or extremely5

over refined meshes with unbearable number of elements for6

any simulator and therefore no practical usefulness. In this sec-7

tion we discuss meshing issues, starting from the challenges8

that the tetrahedralization of our PLCs pose (Section 6.1), and9

then analyzing the performances of two popular mesh genera-10

tion tools, which will be discussed in Section 6.2 and 6.3, re-11

spectively. In Table 1 we report numerical statistics about the12

results produced with both tools.13

6.1. Meshing issues14

Imagine a perfect cube standing on its base. If printed in this15

position, all of its slices will be identical. Now imagine to ap-16

ply some torsion to the cube, rotating its upper face by a small17

angle. The slices are no longer identical and, if two consecu-18

tive slices are projected on a common plane which is parallel to19

both, eight tiny triangular pockets appear (Figure 9, left). De-20

pending on the amount of torsion and the density of the slicing,21

the pockets can be arbitrarily small, producing features that are22

difficult to incorporate in the tetrahedral mesh. Similarly, ad-23

jacent slices with nearly tangent contours may generate criti-24

cal features, as depicted in the right part of Figure 9. Besides25

the difficulty in embedding these critical features in the tetra-26

hedral mesh, one should recall that a good simulation mesh27

contains only well shaped elements. In practice, this means28

that additional Steiner points are added in the domain to pro-29

vide enough degrees of freedom for high quality meshing, and30

a huge amount of them will be localized nearby these tiny fea-31

tures, to satisfy per-element quality constraints and provide the32

proper grading with the coarser parts of the PLC (Figure 11,33

left). The geometries we consider contain lots of tiny features34

and require a huge number of Steiner points to stay within ac-35

ceptable quality bounds. To this end, they push state of the art36

meshing tools to the limits of what they can do, possibly wit-37

nessing the need for more research in the field.38

Fig. 9. Left: two almost identical slices project one on top of the other,
generating tiny pockets. Right: the contours of two adjacent slices are
almost tangent, generating a tiny tunnel (right). These configurations are
critical for tetrahedral mesh generation, which may either fail or produce
overly complex meshes in order to incorporate such features.

6.2. TetGen 39

TetGen [7] is a program to compute tetrahedralizations of 40

any 3D domain, and is extremely popular in academia. It works 41

in two steps: it first generates a constrained Delaunay tetrahe- 42

dralization of the input points and faces, basically meshing the 43

whole convex hull; then, iteratively removes boundary tetrahe- 44

dra until all the external faces of the PLC are revealed, leav- 45

ing the inner constraints embedded in the connectivity of the 46

mesh. The skin of the output tetrahedral mesh is therefore a 47

faithful replica of the input; no deviation from it is allowed. In 48

reality, TetGen uses finite precision floating point numbers to 49

express coordinates, and pre processes the input PLC to avoid 50

operations involving quantities that are close to machine preci- 51

sion. Specifically, faces of the PLC that are nearly coplanar are 52

snapped to the same plane, possibly colliding with other geo- 53

metric elements. It should be noticed that in most of the cases 54

this operation is harmless; however, in our specific setting ex- 55

tremely tiny features abound, and we empirically observed that 56

we could not generate valid tetrahedral meshes without tweak- 57

ing the threshold for the coplanarity test, which we lowered 58

from the default value of 1 × 10−8 to 1 × 10−13, using the flag 59

-T1e-13. With this tiny modification we were able to solve 60

the first issue stated in Section 6.1, producing coarse tetrahe- 61

dral meshes with minimum amount of Steiner points for nearly 62
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Data: Slice vertices V and edges S
Result: PLC vertices V , and edge split info
for each edge e(va, vb) lifted from slice si do

for each edge e′(vc, vd) from slice si+1 do

p = (va, vb) ∩ (vc, vd);

// try to lift va;
if p = va = vc then

set vc as lifted image of va
else

if p = va = vd then
set vd as lifted image of va

else
if p = va then

add vertex p to V and set it as lifted image of va
end

end
end

// try to lift vb;
if p = vb = vc then

set vc as lifted image of vb
else

if p = vb = vd then
set vd as lifted image of vb

else
if p = vb then

add vertex p to V and set it as lifted image of vb
end

end
end

// update split info for e(va, vb);
if p = vc and p , va and p , vb then

add vc as split point of lifted edge e(va, vb)
else

if p = vd and p , va and p , vb then
add vd as split point of lifted edge e(va, vb)

else
if p , va , vb , vc , vd then

add vertex p to V and set it as split point of lifted
edge e(va, vb)

end
end

end

// update split info for e′(va, vb);
if p = va and p , vc and p , vd then

add va as split point of edge e′(vc, vd)
else

if p = vb and p , vd and p , vd then
add vb as split point of edge e′(vc, vd)

else
if p , va , vb , vc , vd then

add vertex p to V and set it as split point of edge
e′(vc, vd)

end
end

end
end

end

// lift unlifted vertices;
for each vertex with no lifted image yet do

lift it to the slice above and append the new vertex to V;
end

Algorithm 1: Our edge pre-processing strategy. Note that in
the actual implementation we substituted the inner loop with
a query on a spatial data structure (a quad-tree) to avoid use-
less intersection tests, thus reducing complexity from O(n2) to
O(n log n).

Fig. 10. Left: the PLC of a sphere, produced with slice2mesh. The mesh
contains elements also in the interior, describing the geometry of each slice.
Right: a tetrahedral mesh obtained with TetWild. The interior/exterior fil-
tering based on generalized winding numbers is fooled by our inner struc-
tures, and the software is not able to reproduce the sphere.

all the PLCs we have created. The meshes illustrated in the 1

previous version of this article [6] were of this kind. However, 2

we could experience a few cases that made TetGen crash in any 3

case, even if we could verify that the input was perfectly valid. 4

For the second issue, that is the generation of refined tetra- 5

hedral meshes which meet some prescribed per element quality 6

bound, we could not find a satisfactory solution. TetGen allows 7

to prescribe quality criteria with the -q flag, but it was able to 8

converge only for a few simple objects, failing for the rest of 9

the dataset. As an example, the PLC of the Fandisk ran for six 10

days on a cluster having 32 Intel Xeon 2.00GHz CPUs and 125 11

GB of RAM without converging. It is not yet clear whether 12

TetGen was actually adding Steiner points for six days, or it 13

was stuck in an infinite loop because it could not find a proper 14

position (expressed in finite precision coordinates) to insert a 15

new one. Besides the difficulties of using finite precision, in- 16

deed, the refinement algorithm used in TetGen is not guaran- 17

teed to converge if the input PLC has dihedral angles smaller 18

than 69.3 degrees, unless additional points are carefully placed 19

around these angles. Unfortunately, the number of these addi- 20

tional points can grow arbitrarily [42]. 21

6.3. TetWild 22

TetWild is a robust tetrahedralization software recently pre- 23

sented in [8]. Differently from TetGen, it makes no assumption 24

on the input, and is capable of turning into a tetrahedral mesh 25

objects that do not unambiguously enclose a solid (i.e., they 26

self-intersect or are not watertight), or that contain topological 27

issues (e.g. non-manifold vertices/edges). In practical terms, 28

TetWild is allowed to deviate from the input PLC, meaning that 29

its faces and vertices are not necessarily embedded in the con- 30

nectivity of the tetrahedral mesh. Similarly to TetGen, TetWild 31

first generates a mesh of a scaffold containing the input geom- 32

etry, and then removes the external tets to reveal the shape. In 33

this case, this operation is performed using generalized winding 34

numbers [17], which are used to robustly separate the interior 35

of the object from the outside. As pointed out in Figure 3, our 36

PLCs describe both the outside and the inner structure of the 37

mesh, and involve a number of non-manifold edges. General- 38

ized winding numbers do not perform well in these conditions, 39

and are not able to correctly label inside and outside (Figure 10). 40

We solved this issue by disabling the tet filtering inside TetWild, 41
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1M Verts
5M Tets

53K  Verts
230K Tets

25K  Verts
115K Tets

Anc101

Fig. 11. Three meshes produced with TetWild with growing numbers of parameter ε, which controls the deviation from the input PLC. Very tight con-
straints (left column) produce overly dense clusters of elements nearby tiny features, that the grading pushes also in the interior (yellow inset). Conversely,
too loose constraints (right column) produce much coarser meshes, but the edges of the mesh start not to follow the geometry of the slices (red dashed
line), and the reproduction of the staircase effect is unsatisfactory (bottom right corner). Values in between (mid column) provide a good balance between
element count and geometric fidelity.

and then run it separately using a version of the PLC which does1

not contain the internal structure of the mesh, and therefore cor-2

rectly encodes the skin of the mesh we aim to produce.3

Our experimentation confirms that TetWild’s approach is ex-4

tremely robust, and allowed us to produce all the refined meshes5

shown in this article. However, it also reveals an intrinsic mesh-6

ing problem for which a satisfactory solution is still missing. In7

fact, its ability to process pathological meshes containing ex-8

tremely tiny features by allowing a (bounded) deviation from9

the input geometry comes at a cost: the resulting mesh is no10

longer conformal with the input PLC. In Figure 11 we show11

different meshes obtained by enabling growing deviations from12

the input geometry. This is controlled by parameter ε, which13

sets a local deviation tolerance as a fraction of the diagonal of14

the bounding box of the model. As one can notice, such de-15

viations can produce tets that span across adjacent slices (red16

ovals), and deviate from the input geometry in bizarre ways, 17

even if they stay within the prescribed tolerance (bottom right 18

corner). Tetrahedra may cross adjacent slices either in the in- 19

terior or on the boundary. The latter case is typically worse 20

because, besides spoiling slice conformity, we horizontally de- 21

viate from the only accurate information we have, that is, the 22

input slice geometry. Fortunately, our experiments show that 23

such a deviation is always smaller than ε in practice, whereas 24

the average horizontal deviation is orders of magnitude smaller 25

(see Figure 14). Surface conformity is maintained during the 26

first phase only, when TetWild uses exact arithmetic to inter- 27

nally represent the initial unrefined mesh. If such a conformal 28

mesh is needed, one may think of just stopping TetWild be- 29

fore the refinement stage, but this requires to approximate exact 30

coordinates to make the mesh suitable for downstream applica- 31

tions. Unfortunately, on domains with very small features, such 32
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CAD5

Stab

Fig. 12. A gallery of sliced CAD models meshed with slice2mesh.

Anchor

Fig. 13. Two different slicings for the Anchor model, with their associated volumetric meshes. Right: a finer slicing better approximates off-axis features.

a rounding may easily lead to flipped tetrahedra. To the best of1

our knowledge, robust snap rounding in 3D is still a challenging2

problem. Some theoretical solutions have been recently pro-3

posed [43], but their complexity is too high to be implemented4

and used in practice.5

7. Results6

We implemented slice2mesh using CinoLib [38] for CLI7

and geometry processing, the Boost Polygon Library for curve8

thickening and 2D booleans, Triangle [41] for planar triangu-9

lations, and either Tetgen [7] or TetWild [8] for the final tetra-10

hedralization. For the meshes obtained with TetWild, the final11

inside/outside tet filtering was computed in post-processing on12

a modified version of the PLC which does not contain the inter-13

nal slices, using the implementation of the generalized winding14

numbers available in libIGL [45]. In Figures 1, 13 and 12 we15

show a variety of results. In Table 1 and Figures 15 and 1416

we report statistics and timings of our experiments. For each17

set of slices, we considered two alternative meshing settings for 18

Tetgen (with/without the -q flag for quality refinement), and 19

three settings for Tetwild (ε = 0.05, 0.1, 0.2). As can be noticed 20

from the table, only a few models were tested on TetGen with 21

the mesh refinement enabled, as the program either crashed or 22

ran for multiple days without producing a mesh. We release 23

our tool to the public domain, making available at the following 24

link https://github.com/mlivesu/slice2mesh. 25

Conforming vs non-conforming meshes. slice2mesh gener- 26

ates meshes that encode the temporal evolution of the domain 27

and are therefore more accurate than a mesh produced with gen- 28

eral purpose meshing tools. For general meshes the temporal 29

evolution of the domain can be artificially simulated by filtering 30

out all the tetrahedra with centroid above the quote of the cur- 31

rent slice (Figure 18). Note however that the surface exposed 32

by this naive mesh filtering will be much higher, possibly re- 33

sulting in unfaithful estimation of physical phenomena such as 34

heat dissipation, where the augmented surface area artificially 35

https://github.com/mlivesu/slice2mesh
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Model Slices Tetgen TetWild
-T1e-13 -T1e-13q ε = 0.05 ε = 0.1 ε = 0.2

#V/#T #V/#T #V/#T q #V/#T q #V/#T q
Anc101 38 16K/58K 2.3M/8.7M 1M/5M 1.53/10.62 53K/230K 1.46/12.63 25K/115K 1.30/345
Anchor 86 33K/110K crashed 330K/1.6M 1.68/7.58 45K/209K 1.64/8.33 38K/178K 1.35/9.53

29 3.3K/11K 4.3M/16.2M 28K/121K 1.41/15.74 12K/50K 1.4/10.12 7K/27K 1.43/6.16
CAD5 77 148K/492K crashed 735K/3.7M 1.35/12.42 148K/719K 1.66/8.91 129K/631K 1.71/15.37
Fandisk 35 6K/8.5K stopped after 6 days 418K/2.1M 1.31/13.02 39K/167K 1.51/8.2 23K/105K 1.51/12.04
Joint 83 11K/34K not tested 206K/950K 1.77/13.8 110K/535K 1.56/17.09 93K/460K 1.35/34.05

31 2K/7K not tested 62K/274K 1.4/12.16 28K/123K 1.37/11.8 17K/75K 1.57/16.12
Nugear 88 200K/620K not tested not tested not tested not tested

19 5K/14K 20K/110K 22K/92K 1.23/10.98 19K/78K 1.55/7.98 16K/66K 1.28/9.87
Pyramid 33 2K/6K not tested 6K/25K 1.36/15.44 7K/29K 1.43/18.23 6K/25K 1.66/17.87
Sphere 83 17K/55K not tested 230K/1.1M 1.43/8.91 90K/418K 1.5/9.99 64K/310K 1.47/12.72

33 4K/12K not tested 40K/174K 1.87/17.11 24K/103K 1.67/23.12 16K/73K 1.34/16.66
Stab 95 74K/239K not tested not tested not tested not tested
T 60 not tested 2K/6K 10K/30K 1.67/9.91 12K/38K 1.68/14.03 10K/30K 1.52/15.11

Table 1. Statistics for tetrahedral mesh generation. We tested TetGen [7] with and without the -q flag for quality mesh generation, and also TetWild [8],
with growing numbers for parameter ε, which controls deviation from the input PLC. We report number of vertices (#V), tets (#T), and average/worst
element quality (q, we used the radius ratio metric, as defined in [44]). Mesh quality for tetrahedral meshes produced with TetGen was always rather
poor (> 1010): indeed, the input PLC typically contains arbitrarily bad shaped triangles and, since TetGen exactly conforms to such a PLC, badly shaped
tetrahedra cannot be avoided.
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Fig. 14. Approximation error introduced by TetWild with growing levels
of ε. Error is obtained by averaging the per polygon Hausdorff distance
between the input slices and a slicing of the tetrahedral meshes. Note that
inter slice error grows linearly with ε and is always smaller than ε itself.

Fig. 15. Running times of slice2mesh. Tetrahedral meshes were generated
using TetWild, considering different values for the ε parameter, which sets
the maximum distance from the nominal geometry. The horizontal axis
reports the complexity of the input, expressed in number of triangles in the
PLC. Tetrahedralization software was run on a cluster equipped with 32
Intel Xeon 2.00GHz CPUs and 125 GB of RAM.

boosts heat exchange. 1

Conforming voxels vs tets. With a proper choice of mesh den- 2

sity, voxel grids can be forced to be slice conformal and encode 3

the temporal evolution of the printed object. Our method results 4

in a more accurate simulation domain, which is 100% compli- 5

ant with the proxy shape the printer is asked to fabricate. The 6

same does not hold for voxels, where tiny or off-axis features 7

cannot be represented and may require excessive refinement 8

for a faithful simulation. Moreover, unstructured grids trivially 9

support local refinement, whereas for voxel grids refinement is 10

global (thus more complex and costy). 11

Supports. slice2mesh naturally incorporates external sup- 12

ports into the simulation domain (Figures 6 and 17). The algo- 13

rithm mimics the action of the printer, thickening 1D lines with 14

a value that adapts to the specifics of the printer. The user can 15

prescribe as thickening radius the laser beam (for laser printing) 16

or the section of the plastic filament (for FDM), thus generating 17

an extremely accurate discrete representation of the real fab- 18

ricated object. To the best of our knowledge, no commercial 19

or academic tool has a similar feature. Furthermore, thicken- 20

ing happens in slice space, making the algorithm oblivious of 21

the complexity of the supports, leading to a robust and scalable 22

tool. 23

Simplification. Simulating industrial printers can be expensive 24

due to the extremely small layer thicknesses these machines use 25

(order of microns). A way to make computations affordable 26

without using clusters or extremely powerful machines is to ac- 27

tivate bundles of n adjacent slices all together. slice2mesh 28

supports this simplification by allowing the user to sub-sample 29

the input slices, considering only a sub-set of them for the gen- 30

eration of the PLC. As for supports, everything happens in slice 31

space, therefore computations are oblivious of the complexity 32

of the object to be printed, making simplification scalable and 33

robust. Numbers regarding slice filtering are given in Table 1 34
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Joint

Sphere

Fig. 16. Precisely simulating the activity of industrial printers may be too ambitious, due to the extremely thin slices they use. slice2mesh can generate
approximate representations of the simulation domain by filtering the shape in slice space (i.e. sub-sampling the input slices). This allows to perform
approximate simulations, in which bundles o multiple adjacent slices are activated at at each time step.

Nugear

Fig. 17. An example of volumetric mesh which includes both the object and
its thickened support structures. Matching the thickening factor with the
specifications of the printer (e.g. filament thickness or laser beam) the user
can generate simulation domains which are tailored for a specific hard-
ware.

(see models with two line entries). Visual representations of1

the so generated domains are given in Figures 13 and 16.2

PLC. Besides simulation, the PLC has its own value and could3

be used for other AM-related purposes. Having a digital repre-4

sentation of the printed object can be useful for rendering and5

education, but also for estimating quantities such as the stair-6

case error and the volumetric loss, which are extensively used7

in the process planning pipeline, for example to optimize the8

Fig. 18. Left: a general tetrahedral mesh, where all the elements hav-
ing their centroid above the current slice have been filtered out. Right:
our slice-conformal tetrahedral mesh. Simulations of physical phenomena
such as heat dissipation may be unreliable due to the area of the exposed
surface, which is artificially increased in the left example (1308.54mm2 vs
778.23mm2).

build orientation or surface finish [2, 1]. With optional flags, 9

slice2mesh can be asked to output the PLC. The user can 10

choose whether to include the inner faces, or to export only the 11

external boundary. 12

We point out that slice2mesh is not a surface reconstruction 13

algorithm, but rather a tool to produce a simulation domain that 14

is a digital replica of what a 3D printer would produce out of 15

a given set of slices. Neither slice2mesh nor the 3D printer 16

are aware of the original 3D model. If this model is poorly 17

sliced, possible defects would be incorporated both in the mesh 18

produced by slice2mesh and in the physical object produced 19

by the printer. 20
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8. Conclusions and future works1

We presented slice2mesh, a tool that offers dedicated mesh-2

ing facilities that are specifically tailored for the simulation of3

additive manufacturing processes. In the paper we show that the4

simulation of AM processes poses a number of challenges for5

mesh generation tools, and that general purpose meshing tech-6

niques fall short, offering either rough approximations of the7

domain (e.g. voxels), or meshes that fail to encode the temporal8

evolution of the printed object.9

We demonstrated the capabilities of our tool on a number10

of results, also showing some useful features such as a flexible11

meshing system for support structures and a robust mesh sim-12

plification tool that operates directly in slice space.13

In this extended version we also discuss meshing issues that14

arose during our experimentation. At the moment mesh gener-15

ation heavily relies on the robustness of TetWild [8], which was16

used to produce the vast majority of the refined meshes shown17

in this paper. As discussed in Section 6.3, robustness comes18

at the cost of non conformity between the input PLC and the19

resulting volumetric mesh. We argue that better trade-offs be-20

tween surface conformity and mesh quality can be found, and21

our current research is focused on this aspects.22

For future works, the next natural step is to validate our23

meshes in real simulations. We aim to conduct rigorous ex-24

periments to measure the performances of our slice confor-25

mal meshes when compared with other “fabrication-unaware”26

meshing techniques. Though our preliminary tests are promis-27

ing, they also revealed that some fabrication scenarios employ28

an extremely small layer thickness which leads to a huge num-29

ber of tetrahedra. Thus, while our method can be readily used30

for blown-powder technologies, where the typical layer thick-31

ness is about 200-300 microns, it is not appropriate for powder-32

bed laser sintering, where the thickness can drop down to less33

than 30 microns. Besides the layer sub-sampling discussed in34

Sect. 7, we are currently investigating approaches to (1) paral-35

lelize the FEA itself, and (2) create of a multi-resolution version36

of our dense mesh that adapts as the simulation proceeds (i.e.37

full resolution only near the active layers).38

Other interesting venues for future research involve the gen-39

eration of hexahedral or mixed element meshes to further re-40

duce element count (or obtain more accurate simulations for41

same mesh complexity), and the ability to incorporate in the42

mesh machine toolpaths. Machine toolpaths are usually en-43

coded in the hatches of the CLI files, and slice2mesh cur-44

rently discards them. This would allow to faithfully simulate45

the printing process, activating not only one slice at a time,46

but literally following element by element the actual deposition47

process. Meshes of this kind may have interesting applications48

in aerospace (e.g. to study meta-materials). To this end, the49

biggest challenge we foresee is the ability to bound element50

count, which may explode and result in too complex meshes51

with no practical usefulness.52
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library reference manual. Sandia National Laboratories Technical Report 73

2007;9. 74

[45] Jacobson, A, Panozzo, D, et al. libigl: A simple C++ geometry process- 75

ing library. 2018. Http://libigl.github.io/libigl/. 76

http://www.hmilch.net/downloads/cli_format.html
http://www.hmilch.net/downloads/cli_format.html
http://www.hmilch.net/downloads/cli_format.html
http://drops.dagstuhl.de/opus/volltexte/2018/8743
http://drops.dagstuhl.de/opus/volltexte/2018/8743
http://drops.dagstuhl.de/opus/volltexte/2018/8743
http://dx.doi.org/10.4230/LIPIcs.SoCG.2018.30

	Introduction
	Related works
	Volume mesh generation
	Simulation of AM processes

	Anatomy of a CLI file
	Method
	Generation of the PLC
	Thickening of external supports
	Pre-processing
	Horizontal meshing
	Vertical meshing

	Tetrahedralization
	Meshing issues
	TetGen
	TetWild

	Results
	Conclusions and future works

