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Abstract

A solid cylindrical parameterization is a volumetric map between a tubular shape and a right cylinder embedded in the
polar coordinate reference system. This paper introduces a novel approach to derive smooth (i.e., harmonic) cylindrical
parameterizations for solids with arbitrary topology. Differently from previous approaches our mappings are both fully
explicit and bi-directional, meaning that the three polar coordinates are encoded for both internal and boundary points,
and that for any point within the solid we can efficiently move from the object space to the parameter space and vice-versa.
To represent the discrete mapping, we calculate a tetrahedral mesh that conforms with the solid’s boundary and accounts
for the periodic and singular structure of the parametric domain. To deal with arbitrary topologies, we introduce a novel
approach to exhaustively partition the solid into a set of tubular parts based on a curve-skeleton. Such a skeleton can be
either computed by an algorithm or provided by the user. Being fully explicit, our mappings can be readily exploited
by off-the-shelf algorithms (e.g., for iso-contouring). Furthermore, when the input shape is made of tubular parts, our
method produces low-distortion parameterizations whose iso-surfaces fairly follow the geometry in a natural way. We
show how to exploit this characteristic to produce high-quality hexahedral and shell meshes.
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1. Introduction

Technology is pushing fast the borders of computer graph-
ics and contributes to increase the need for a tighter in-
tegration of design and simulation, both in engineering
domains and in very unspecialized areas. Shape models
available today are extremely sophisticated in terms of
the realism they can visually convey, but are still far from
being suitable to enter a continuous pipeline of processing
that goes through design, simulation, and physical real-
ization [1]. Volume-based parameterization methods are
intriguing for their potential to support the growth of novel
unified representation modalities: internal properties of
solid objects can be modelled and manipulated explicitly,
and simulation of physical properties can rely on a natural
discretization of the geometric domain.

Various volumetric maps have been proposed in recent
years to generate solid representations of 3D shapes, rang-
ing from piece-wise linear meshes made of tetrahedra [2],
hexahedra [3] or mixed-elements [4], to continuous CAD-
like representations such as trivariate splines [5, 6, 7].

An extremely popular approach to volumetric maps uses
harmonic functions as generatrices [8, 9, 10]. This choice
is motivated by their regularity, well behavior, and the
possibility to explicitly control singular points. On the
downsides, a common issue of these methods is the need to
have the user in the loop, as they require a manual placing

of the local maxima and minima. Controlling a harmonic
field by manually placing the right amount of singularities
just in the right position is known in literature to be an
extremely complex task, even for experienced users [11, 12].

In this paper, we focus on solid cylindrical parameteriza-
tions (Figure 1). Our maps are driven by three harmonic
functions, which represent the height, radius, and azimuth
polar coordinates of a parametric cylinder. Polar cylindri-
cal maps are quite a natural choice for tubular shapes, as
they encode the absolute position of each point inside the
object in terms of its relative location with respect to the
inner axis. Indeed, polar cylindrical maps provide a direct
control of the twist component and enable an intuitive
modeling of composite layered objects such as bones [13].
However, they are restricted to simple shapes composed of
a single tube, do not scale on complex shapes with higher
genus or multiple branches, and are intrinsically difficult
to encode in the vertices of a mesh due to the singular
and periodic structure of the polar parametric domain
(Section 3).

The state-of-the-art in the field [13] proposes an implicit
representation of the map for the interior of the object,
storing the azimuth coordinates only for the boundary ver-
tices. The interior of the map is evaluated on-the-fly, with a
cumbersome procedure that first extracts a cross-section or-
thogonal to the axis, and then traces an integral curve from
the boundary to the selected point. No method is described
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to navigate the map in the opposite direction (i.e., locating
object points in the parametric domain). Though effective,
this approach is extremely inefficient from a computational
standpoint (30 minutes for the femur shown in Figure 12 —
our pipeline runs in seconds). Furthermore, being implicit
the map cannot be exported to a file for later use, shared
with other users and, most importantly, cannot be used by
standard algorithms, which would expect it to be in explicit
form, that is, encoded in the vertices of a volumetric mesh
(e.g., for iso contouring [14] or optimization [15]).

We extend the volumetric cylindrical maps proposed
in [13] and also address common issues in the generation of
harmonic maps, such as the manual placement of singular
vertices. Specifically, we propose an automatic method
to generate solid maps of complex tubular shapes with
arbitrary topology. Our contributions are twofold:

• we propose a neat method to discretize the interior
of a tubular shape with a tetrahedral mesh, which
accounts for the periodic and singular structure of
the polar parametric domain. The map can be easily
attached to the vertices, and linearly extended in
the interior of each tetrahedron. In this form, the
map can be readily navigated in both directions and
exploited by off-the-shelf algorithms;

• we remove the user from the loop, using a shape proxy
(i.e., the curve-skeleton) to drive the decomposition of
a complex tubular shape of arbitrary genus into a set
of disjoint atomic tubes, each corresponding to exactly
one of the bones. The algorithm automatically places
the singularities of the field, and is oblivious to the
particular skeleton being used. The only requirement
is that the skeleton is homotopic with respect to the
object and it is completely contained in its volume. To
the best of our knowledge, our multi-cylinder approach
is the first method capable of extending cylindrical
maps to shapes with complex topologies. In a sense,
it can be seen as the equivalent of the multi-block
parameterization often used for cuboidal maps [16, 11].

With our approach, any volume enclosed by a shape
which is well described by its curve-skeleton can be
parametrized, with various domain discretization choices
available thereafter. The input curve skeleton can be either
computed by an algorithm [17, 18, 19, 20] or sketched by a
user [21]. In a sense, the curve-skeleton becomes a tool to
control the map (Figure 10) — note that for some profes-
sionals, such as animators, defining a skeleton is much more
natural than specifying critical points. We demonstrate
the usefulness and intuitiveness of our tool in classical solid
modeling problems, such as hexahedral meshing and shell
meshing.

2. Related work

Our work relates with the following research areas.

Surface Cylindrical Maps. Cylindrical parameterizations
for surfaces have been extensively studied in literature.
In [22, 23, 24], three methods are presented to map a sur-
face with two boundaries to an open cylinder. Huysmans et
al. [25] compared cylindrical and spherical surface maps for
statistical medical shape modeling, emphasizing the impor-
tance of using cylindrical parametric domains for elongated
tubular bones. Kalberer et al. [26] proposed a stripe param-
eterization method for tree-like genus zero shapes based
on branched coverings. These methods are restricted to
surfaces only and are mostly inspired by problems arising
in medicine, such as the analysis of blood vessel and bone
shapes. We propose a volumetric approach and consider
general tubular shapes; i.e., any shape that can be decom-
posed into atomic tubes having two bases and a lateral
surface, with no restrictions on topology, morphology, and
on the way tubes are attached to one another.

Volumetric Maps. Mappings between a shape and a solid
parametric domain are at the core of many recent model-
ing techniques. The generatrices of the map can be vari-
ous. Popular choices are harmonic [10] and bi-harmonic
functions [8], but the map can also be generated through
a continuous deformation that goes from the shape to
a parametric space composed of multiple face-adjacent
blocks [3, 27]. The latter case is possibly the most flexi-
ble, but a proper parametric domain must be computed
a priori. Scientific literature offers a plethora of different
methods to generate well-shaped multi-block parametric
domains [28, 6, 11, 29, 7, 9]. Though very general, for
tubular shapes cylindrical domains are still a better solu-
tion as they introduce less singularities, better align to the
local curvatures and naturally encode each point inside the
object with respect to the inner axis. We outperform the
state of the art in the field [13] by providing an explicit
representation of the cylindrical map and by supporting
general tubular shapes with arbitrary topology (Section 6).

Tubular Shapes. Decomposing a shape into a set of simpler
primitives is a fundamental problem in geometry process-
ing. In particular, tubular (or cylindrical) decompositions
are widely used for shape approximation and modeling.
Methods such as [30, 31] aim to recognize the cylindrical
components of a shape, though are not applicable to our
specific problem since they may leave some portions of the
shape with weak cilindricity outside of the decomposition.
Similarly, Wu and Lui [32] propose a skeleton-driven tube
decomposition, but their method leaves some unassigned
voids around the branching nodes of the skeleton. Antiga
et al. [33] proposed an effective method specific for bifurcat-
ing blood vessels. Their method does not scale on general
shapes. The work of Thiery et al. [34] is very similar in
spirit to ours, as they decompose a tubular object into a
set of cylinders and then use a surface cylindrical map to
generate an analytic curve-skeleton. Our method can be
seen as its volumetric extension. A number of methods
in literature propose skeleton-driven modeling techniques
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Figure 1: Three different examples of our volumetric cylindrical parameterization. For each map, we show a sub-sampling of the iso-surfaces of
each scalar field (z, ρ, θ). Our approach is capable of producing high quality volumetric maps for simple cylinders with straight axis (top); it
does not introduce twisting of the azimuth field along the spine for cylinders with a tortuous axis (middle); and it is capable of producing high
quality fields also for shapes with weak cylindricity (bottom).

for tubular shapes. Some of them aim to produce block-
structured surface meshes [35, 12, 32, 36], some others
volumetric meshes [37, 6, 38, 39]. These methods focus
on a specific tessellation. We offer a generic tool for solid
modeling based on a cylindrical map and are therefore
more general and open to various domain discretization
choices.

3. Preliminaries and Notation

In this section, we briefly introduce the two fundamental
bricks on top of which we define our algorithm: cylindrical
polar coordinates and cylindrical parameterization. In
doing so, we also fix the notation, which will be consistent
in all the subsequent sections.

Cylindrical Coordinates. extend the two-dimensional polar
coordinates to three dimensions by superposing a height
axis. The position of a point in cylindrical space is de-
fined by the radial distance from the axis, called radius,

the angular distance with respect to a
reference direction, called azimuth, and
the distance from a reference plane or-
thogonal to the axis, called height. Dif-
ferent symbols have been used to repre-
sent these three quantities — we adopt

here the notation proposed in [40], using ρ to denote the
radius, θ to denote the azimuth, and z to denote the height.

Cylindrical Parameterization. is a bijection between a
tubular shape T composed of two disjoint bases and a
lateral surface in between and a unit cylinder living in the
cylindrical coordinate reference system. We are interested
in the volumetric version of this map, meaning that to each
point in the interior of T we associate a triplet (ρ, θ, z) that
maps it to a point in the cylindrical parametric space, with
ρ ∈ [0, 1], θ ∈ [0, 2π) and z ∈ [0, 1].

Notice that the cylindrical parameterization is singu-
lar along the axis, where the radius vanishes. If we fix
a height z, for any pair of azimuth values θ1, θ2 we have
that (0, θ1, z) ≡ (0, θ2, z). Similarly, if we fix a radius ρ
and a height z, we have that (ρ, 0, z) ≡ (ρ, 2π, z). This is
because the azimuth component of the map is also peri-
odic in [0, 2π). The structure of the parametric space is
particularly relevant when it comes to compute and store a
cylindrical map in the vertices of a discrete mesh. In fact,
the domain discretization must account for the periodic-
ity and singularity of the polar map. Generating such a
discretization will be the subject of Section 5.
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4. Overview

We propose an automatic method to generate solid cylin-
drical maps of complex tubular shapes with arbitrary topol-
ogy. Our inputs are the boundary of a tubular object T ,
represented by a triangle mesh, and its curve-skeleton S (in
the sense of [20]). Assuming S is composed of n bones, we
first decompose T into a set of atomic tubes T 1, T 2, ..., T n
(each one associated to a bone of S), then we generate a
separate map for each of them (Section 6).

In the discrete setting, the map is defined on the vertices
of a tetrahedral mesh representing T , and linearly interpo-
lated in the interior of each tetrahedron. In particular, the
map is represented by three discrete harmonic functions
(fρ, fθ, fz) that associate respectively a radius, an azimuth
and a height to each vertex of such mesh.

In Section 5, we detail how to parameterize an atomic
tubular component. We tackle the problem of generating
a discretization of the shape which takes into account the
periodic and singular structure of the parametric domain,
and also discuss how to compute the fields fρ, fθ, fz and
encode them in the vertices of the resulting tetrahedral
mesh. To the best of our knowledge, this is the first method
capable to produce such a discretization.

In Section 6, we discuss our skeleton-driven decomposi-
tion in atomic tubes. We motivate the introduction of a
novel splitting technique by observing that similar methods
for tube decomposition (e.g. [30, 31]) may leave portions
of the object with weak cilindricity outside of the decom-
position and are therefore not suited for our purposes. The
decomposition we present guarantees that the union of all
tubes coincides with the input shape, thus ensuring that
the resulting parameterization is defined within the whole
domain.

5. Single Tube Parameterization

Herewith, we consider an atomic tubular shape T defined
by sweeping an evolving disk-like, possibly non-planar cross
section along a general curve in the space. We call such
curve the axis of the tube, and we denote it with Taxis.
We refer to the uppermost and lowermost cross sections of
T as its bases, and we call them Ttop and Tbot respectively.
Finally, we refer to the portion of the boundary in between
Ttop and Tbot as the lateral surface of the tube, and we
call it Tsrf. Notice that the union of Ttop, Tbot and Tsrf
coincides with the boundary of T .

We first explain how to generate an initial volumetric
discretization of the tube (Section 5.1), and then discuss
the details regarding the computation of the radius (Sec-
tion 5.2), height (Section 5.3), and azimuth (Section 5.4)
of our cylindrical map.

5.1. Pre-processing

The goal of this step is to prepare the volumetric mesh
on top of which the functions fρ and fz will be computed.

The domain will then be further modified to account for
the periodic structure of fθ, as explained in Section 5.4.
In the discrete setting, T is a solid bounded by a triangle
mesh and Taxis is a piece-wise linear open curve defined by
a collection of segments attached to one another at their
extremities. We initialize Taxis as the curve-skeleton of T .
Our method is oblivious to the specific method being used.
Taxis can be either computed with an algorithm (e.g., [41])
or sketched by a user.

We wish to generate a tetrahedral mesh that satisfies
two important requirements: (i) the radius component fρ
evaluates 0 at the tube axis (Taxis) and 1 at its lateral
surface (Tsrf). For this to be possible, both the vertices

and the edges that compose Taxis should be incorporated
in the tessellation; (ii) the height component fz associates
a disk-like cross section to each point in Taxis, with the
uppermost and lowermost cross-sections being the bases of
the tube. The tube axis Taxis should therefore traverse T
from base to base and be completely internal to it, with
the only exception being its two endpoints, which must be
placed directly on its surface.

Unfortunately, the axis computed by some algo-
rithms [31] is entirely contained in the solid, endpoints
included. In these cases, we simply elongate each of
its extremities by linear extrapolation, locate the in-
tersection with the boundary of T , and create an ad-
ditional segment for each extremity of Taxis. When-
ever necessary, we split the involved triangles to en-
sure mesh conformity. Conformity with respect to a
boundary mesh and a collection of segments are easy
requirements for many tetrahedral meshing algorithms.

We eventually generate the tetrahedral
mesh using off-the-shelf software [42].
Notice that since Taxis will be embed-
ded in the mesh, it is important to have
a good sampling of the curve. A coarse
sampling will result in a bad volumet-
ric discretization, as shown in the inset
aside. If necessary, then Taxis can be
equally resampled via arc-length param-

eterization before meshing.

5.2. Radius

The function fρ that encodes the radius of the cylindrical
parameterization is the simplest to compute. It evaluates 0
at the tube axis (Taxis), and 1 at its lateral surface (Tsrf).
We generate it by solving for the following harmonic field

∆fρ = 0∣∣Taxis = 0
Tsrf = 1

.

We implement ∆ as the cotangent Laplace operator for
tetrahedral meshes

∆(vi) =
∑
vj∈Ni

1

6

∑
t∈N(i,j)

|t(p,q)| cot ϕt(p,q)

 (vi − vj),
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where vi is a general vertex of the tetrahedral mesh, Ni
its directly adjacent vertices, N(i,j) is the fan of tetrahedra
having (i, j) as edge and, for each such tetrahedron, t(p,q)
is the edge (p, q) opposite to (i, j), with |t(p,q)| and ϕt(p,q)
being its length and dihedral angle, respectively.

5.3. Height

The height of the cylindrical parameterization (fz) eval-
uates 0 at the bottom base of the tube (Tbot), and 1 at
its top base (Ttop). In order to be able to compute it, it
is therefore necessary to select two disjoint regions on the
boundary of T that act as bases. Each base is attached
to one of the extrema of the tube axis, therefore we start
from the endpoints of Taxis and we perform a BFS visit
of the graph having as nodes the boundary vertices of T
and as arcs its surface edges. Starting from each endpoint
we expand by vertex normal similarity, according to the
following criterion

~nv · ~nref > 0.9,

where ~nv is the surface normal at the current vertex and
~nref is the surface normal at the axis endpoint currently
considered. Notice that if the result of this procedure is
not satisfactory manual refinement of the bases is also pos-
sible. In our experiments we always used the full automatic
procedure, at the end of which we solved for the height
field

∆fz = 0∣∣Tbot = 0
Ttop = 1 .

using the two bases Ttop and Tbot as Dirichlet boundary
conditions.

5.4. Azimuth

The function fθ that encodes the azimuth of the cylindri-
cal map is a periodic function defined in the range [0, 2π).
A desirable property for fθ is to have a gradient that is lo-
cally as-orthogonal-as-possible to both ∇fz and ∇fρ. This
is a fundamental requirement for applications like hexahe-
dral re-meshing and spline fitting, as it ensures well shaped
hexahedra and tensor product trivariate domains [16, 11].
Assuming to have already computed both height (fz) and
radius (fρ), the optimal gradient ∇fθ can be trivially com-
puted on a per-tet basis as

∇fθ = ∇fz ×∇fρ.

Unfortunately, this relation is not of much help
because the resulting vector field is divergence-
free. Vector fields defined on the parameterization

NON INTEGRABLE
VECTOR FIELD

INTEGRABLE
VECTOR FIELD

M
IN

M
AX

cut open

domain (see figure aside) with
divergence zero everywhere do
not have a scalar potential,
meaning that they are not the
gradient of any scalar function
and, therefore, are not inte-
grable [43]. In order to be able

to compute fθ and encode its values in a discrete mesh,
it is therefore necessary to disambiguate the singular and
periodic portions of the domain (Section 3), duplicating the
vertices with azimuth 0 and 2π, and removing the singular
axis by carving the shape along its spine, as depicted in
the 2D example above.

We compute a surface Ψ that cuts the cylinder open along
its axis (Section 5.4.1) and produce a new tetrahedral mesh
that conforms to both T and Ψ. We then duplicate the
vertices and faces of Ψ in order to generate two copies of it,
say Ψfront and Ψback. For the singularity along the spine,
we create a cavity that follows the tube’s axis. To do so,
we consider the radius field fρ and compute the iso-surface
ρ = ε (0.05, in all our tests). We then split all the tetrahedra
crossed by the iso-surface and eliminate the tets staying
in the ρ < ε side of the mesh. We eventually compute the
function fθ in the resulting tetrahedral mesh, by solving for
the following harmonic field subject to Dirichlet boundary
conditions on both sides of Ψ

∆fθ = 0∣∣Ψfront = 0

Ψback = 2π

.

5.4.1. Computation of the cut surface

The design of Ψ is a delicate part in the generation of fθ.
Its shape, indeed, influences the distortion of the resulting
parameterization. As already explained in the beginning
of the section, we would like fθ to be as-orthogonal-as-
possible to both fz and fρ. Since the field fθ will have
Ψfront as source and Ψback as sink, the cut surface must be
as-aligned-as-possible to the gradients ∇fz and ∇fρ. This
property guarantees well shaped cuts, avoiding tedious
artifacts such as twisting along the tube axis Taxis.

In short, we define Ψ as a topological quad
(ψ0, ψ1, ψ2, ψ3) in the parametric space, as depicted in the
right part of Figure 2. The parametric coordinates of each
corner are

fz(ψ0) = 0, fρ(ψ0) = 1
fz(ψ1) = 1, fρ(ψ1) = 1
fz(ψ2) = 0, fρ(ψ2) = 0
fz(ψ3) = 1, fρ(ψ3) = 0.

Notice that ψ2 and ψ3 are the endpoints of the Taxis.
To construct the outline of Ψ, we start at an arbitrary

point ψ0 in the boundary of the bottom base Tbot and
we trace a curve over its lateral surface, following the
gradient ∇fz until we reach its top base (Figure 2, left).
The endpoint of the resulting curve is ψ1. We then trace a
new curve over the bottom base of the tube, starting from
ψ0 and following the anti gradient −∇fρ until we reach
ψ2. We do the same on the top base, starting form ψ1 and
following −∇fρ until we reach the point ψ3. These three
curves, together with the axis Taxis, form the outline of
the topological quad Ψ (Figure 2, middle). We integrate
the integral curves in the connectivity by splitting all the
edges and triangles being traversed.

To design the interior of Ψ, we evenly sample the curve
connecting ψ0 and ψ1 and, starting from each such sample,
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Bottom base

Top base
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surface

Axis

Figure 2: We cut the tubular domain open to accommodate a cylindrical map. We start from an arbitrary point at its base and we trace an
integral curve along its lateral surface, following the gradient ∇fz (left). We then sub-sample the curve and, for each such sample, we create
an integral curve that penetrates the volume along −∇fρ. The result is a gridded topological quad that defines our cut surface Ψ (middle).
We mesh the grid using quads for the interior and triangle fans for the cells with at least one side exposed either on the boundary of the tube
or on its inner axis. This ensures a seamless integration of Ψ in the discrete domain, preserving mesh conformity everywhere (right).

Poor sampling Dense sampling

Figure 3: If the sampling density is not dense enough, then the cut
surface Ψ can be outside of the cylinder (left and middle). Increasing
the sampling frequency fixes the problem (right). A sufficiently
dense sampling, such that Ψ is fully contained in the cylinder and
conforming with its boundary, is guaranteed to exist.

we trace an integral curve that penetrates the volume of
the cylinder along the anti gradient −∇fρ. Since Taxis is
the minimum of the radius field fρ, each such curve will
converge to it. We eventually re-sample each curve in order
to generate a regular sample grid that we use to drive the
meshing process.

Since the four sides of Ψ are exposed either on the bound-
ary of the tube or on its inner axis, we mesh the sample
grid using quads for the interior and triangle fans for the
cells. This ensures that the lateral surface Tsrf, the bases

Ttop, Tbot, the axis Taxis and Ψ are all seamlessly inte-

grated in a single conforming mesh (Figure 2, right). The
ultimate tetrahedral mesh is eventually constructed via
refinement, that is, splitting all the tets traversed by Ψ.
Notice that mesh conformity is fundamental here. Self-
intersecting triangles will not be tolerated by TetGen [42]
causing a failure in the refinement, whereas small gaps
between Ψ and T will put the two sides of the cut surface
directly in contact, making it useless.

This approach has a flaw: the triangle fans used to
mesh the borders of Ψ may self intersect or even sneak out
of the domain if the grid sampling is not dense enough,
as shown in Figure 3. However, since both the height
and the radius are harmonic functions, a sampling density
τ > 0 for which the surface is both fully contained in the

tube and does not self intersect is guaranteed to exist. In
our implementation, the user can visually inspect the cut
surface and, if necessary, increase the sampling density both
along fz and fρ. An automatic detection of pathological
situations is also possible. Testing the cut surface and the
boundary of the tube for self-intersections would highlight
the spots that need a denser sampling.

6. Skeleton-driven tube decomposition

The method described so far is capable of generating a
cylindrical map for simple tubular shapes of trivial topology.
Although mappings of this kind can already be useful
for some specific tasks [13], we acknowledge that in most
applications shapes will be much more complex, containing
an arbitrary number of tubes possibly connected together
at high valence junctions. In this section, we explain how
to generalize the cylindrical map to any shape that can be
well described by a curve-skeleton, regardless the number
and connectivity of the bones.

Given a complex tubular shape T and its curve-skeleton
S, we introduce a method to decompose T into a set of
atomic tubes T 1, T 2, ..., T n, each associated with a bone of
S. Ideally, we aim to assign each point in the object to its
closest skeleton bone, which corresponds to partitioning the
domain by a Voronoi diagram having the bones themselves
as sites. Computing a Voronoi diagram of 3D line segments
is known to be an open problem in literature, but approxi-
mate solutions exist [44]. However, we observe that a strict
Voronoi decomposition would possibly lead to undesired
results, where some of the elements of the decomposition
do not have a clear tubular structure (Figure 4).

Structural constraints. Our tubular decomposition tries
to be as close as possible to a Voronoi partitioning, while
satisfying precise structural requirements imposed by the
underlying curve-skeleton. We make sure that each element
of the decomposition is a tube-like shape composed of a
lateral surface bounded by two bases, and is traversed from
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Figure 4: Top: a Voronoi decomposition of the domain which assigns
each point to its closest skeleton bone may fail to generate a valid
tubular decomposition (first and second components). Bottom: our
method tries to be as Voronoi as possible while satisfying precise
structural requirements that ensure that each component is a topo-
logical tube, with two disjoint bases (red and blue) and a skeleton
bone as inner axis (black).

Plumber Gen. Cyl. Dec. Ours

Figure 5: A comparison between Plumber [31], GCD [30] and our
tube decomposition. Both Plumber and GCD do not decompose the
core of the Gecko, leaving a spurious component with four disjoint
boundary curves. It is unclear how to fit a cylindrical map in there.
Our method decomposes the core of the shape into three neat tubular
parts (head, tail, body) which admit a natural cylindrical map.

base to base by a skeleton bone which represents its inner
axis. The lateral surface must be completely exposed on
the boundary of the domain, whereas the bases are either
skinned into the volume of the shape (for skeleton joints
where at least two bones meet) or produced as described in
Section 5.3 (for the extremities). These constraints ensure
that tubes touch to one another only at their bases, and
are completely disjoint if their corresponding bones are
not directly connected through a skeleton branching node.
Notice that the decomposition we aim to find is inherently
volumetric, as finding the tube bases skinned into the
volume is part of the problem. For this and for other
reasons, none of the previous surface-based decomposition
approaches (e.g., [30, 31]) is capable of solving this problem
(Section 2).

Skeleton split. Internal skeleton bones have two branch-
ing nodes as extrema. In order to separately control the
connectivity between adjacent tubes on each side of the
bone, we halve each curve of the skeleton. As a result, each

half-bone will be adjacent to its twin half-bone on one side,
and to the half bones incident to the same branching node
on the other side.

Problem formulation. We cast the half-tube decomposition
as a multi-label graph optimization problem defined on the
dual of the tetrahedral mesh representing the domain T .
The graph has a node for each tetrahedron and an arc for
each pair of adjacent tetrahedra connected through a facet.
Our decomposition is the minimizer of the following energy

E(T ) =
∑
t

C(t, b) +
∑
ti,tj

S(ti, bi, tj , bj),

where C(t, b) is the so called data term, that is, the cost
of assigning the tetrahedron t to the skeleton half-bone Sb,
and S(ti, bi, tj , bj) is the smoothing term, that is, the cost
of assigning the pair of adjacent tetrahedra ti, tj to the
skeleton half-bones Sbi ,Sbj , respectively.

The data term is defined in the range [0, 1] and is com-
puted as the distance between the barycenter of the tetra-
hedron t and the skeleton half-bone Sb, normalized by the
maximum distance between a tet and a skeleton half-bone.
If t is directly incident to Sb (i.e., they share one edge or
vertex), then C(t, b) evaluates zero

C(t, b) =

{
0 if Sb ∩ t 6= ∅,

d(t,Sb)
maxt,b d(t,Sb)

otherwise.

The smoothing term is defined in the range [0,∞) and
evaluates 0 if two adjacent tetrahedra map to the same
skeleton half-bone, 1 if they map to two adjacent half-bones
(i.e. the half-bones meet at a skeleton branching node or
are part of the same bone), and ∞ if they map to two
disjoint skeleton half-bones

S(ti, bi, tj , bj) =

 0 if Sbi = Sbj ,
1 if Sbi ∩ Sbj 6= ∅,
∞ if Sbi ∩ Sbj = ∅.

We minimize the energy E(T ) using the graph cut al-
gorithm [45, 46, 47] and generate the ultimate tube de-
composition by merging together the regions associated
to twins half-bones. Notice that any tube decomposition
for which E(T ) <∞ is valid, meaning that it satisfies the
structural constraints imposed by the underlying curve-
skeleton. Since we are solving the decomposition problem
in a discrete space, a solution for which E(T ) < ∞ may
not exist. If the mesh is sufficiently dense, then this case
is very unlikely to happen (it never happened in all our
experiments). If necessary, then additional degrees of free-
dom may be introduced by mesh refinement, up to a point
at which a valid solution is guaranteed to exist. With a
tube decomposition at hand, we first separate tubes by du-
plicating the vertices shared between multiple components,
and then generate a cylindrical map for each component
as explained in Section 5.
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Figure 6: We show here the membranes that separate adjacent tubes
for the Fertility model. All the vertices in these membranes will have
multiple parametric coordinates, one for each tube incident to them.
We impose equality constraints on the height and radius components
of these parametric coordinates. Doing so, we can ensure global C0
continuity for both height and radius.

z=0
z=1

Figure 7: If the skeleton contains a loop (left) it might not be
possible to generate a C0 continuous fz field (middle). By virtually
splitting each bone into two sub-bones we can guarantee that tubes
always touch at their lower base (z = 0), thus ensuring C0 continuity
everywhere (right).

7. Continuity of the map

We discuss here the continuity of the maps both for the
single and multiple tube cases. As for similar approaches
based on discrete harmonic functions, for the single tube
case the map is C1 continuous everywhere except at the
boundary conditions, where it is C0 continuous. For the
multiple tube case, similarly to cuboidal maps [16] the
goal is to ensure C0 across the boundaries between adja-
cent tubes. In the following paragraphs, we discuss each
coordinate separately.

Radius. The interfaces between adjacent tubes are con-
forming. Consequently, when solving for fρ it is possible
to impose C0 continuity across the tubes by simply asking
each copy of these interface vertices to receive the same
ρ value in all the tubes incident it (Figure 6). This trans-
lates to simple linear constraints that can be added to the
problem described in Section 5.2 as additional Dirichlet
boundary conditions.

Height. As depicted in Figure 7 (middle), in some cases
it is not possible to have fz being C0 continuous across
adjacent tubes. However, continuity can be always ensured
by virtually halving each tube, producing a new function
f̃z that evaluates 0 at both bases and 1 at mid height
(Figure 7, right). We defined f̃z as

f̃z =

{
2fz 0 ≤ fz ≤ 0.5,

−2(fz − 1) 0.5 < fz ≤ 1.

1

>20

Model min avg max
Cylinder
Spring
Bimba
Femur (1 bone)
Cactus
Rocker Arm
Fertility

1.101 3.453 19.718
1.071 3.537 18.147
1.117 8.312 22.908
1.107 6.358 25.734
1.185 3.649 21.676
1.201 7.961 23.819
1.134 5.164 30.827

Figure 8: Left: we report some statistics about the min/avg/max
distortion of the cylindrical maps shown throughout the paper. We
use the aspect-ratio distortion metric [15] — the optimal value (i.e.,
no distortion) is 1. Mappings are provided as-is, without any post
processing. Notice that lower distortion maps could be easily obtained
by applying some optimization technique, such as [48, 49, 15]. Right:
as expected a cylinder has a fairly low distortion whereas shapes
with weak cylindricity, such as the Femur, present areas with higher
distortion around protuberances.

Azimuth. As for the height case, it is not possible to ensure
continuity of the azimuth for three or more tubes that
meet at a branching node. We decided not to ensure any
continuity in the fθ fields coming from adjacent tubes, but
rather store for each pair of tubes an angular displacement
∆θ that, if necessary, allows to match the θ fields pairwise.
Notice that for many applications (e.g. hexahedral and
shell meshing) this is not limiting. In fact most meshing
approaches use templates to handle the branching nodes
[35, 39] and do not require to evaluate the parameterization
at the boundaries between adjacent tubes. Nonetheless, we
believe that trying to ensure some sort of continuity of the
azimuth fields across more than two adjacent tubes is an
interesting problem, and we plan to investigate this topic
further in future works.

8. Results

We implemented a C++ prototype of our solid cylindri-
cal map on a MacBook Pro equipped with an Intel Core i5
and 16GB of RAM. We used [50, 41, 51, 52] to compute
the curve-skeletons and [53] for numerics. In Table 1, we
list numeric results for all our models. Due to the explicit
encoding of the map, our pipeline runs one order of mag-
nitude faster than [13], it is more efficient to evaluate and
does not require customized code for standard operations
such as iso-contouring. In Figure 8 we discuss the distor-
tion induced by our cylindrical map. Notice that maps
are provided as-is, without any post-processing. Aspect-
ratio distortion could be significantly lowered by applying
some optimization technique for simplicial maps, such as
[48, 49, 15]

Single tube. In Figure 1, we show three examples of our
solid cylindrical map for single tubular components. As
can be noticed, our method does not introduce twisting
of the azimuth field along the spine for cylinders with a
tortuous axis, such as the Spring model, and it is capable
of producing high quality fields also for shapes with weak
cylindricity, such as the Bimba model. For each data set, we
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Figure 9: We extend solid cylindrical maps to arbitrary shapes by splitting each shape into a set of topological tubes (left column) and
computing a separate cylindrical map for each component (second, third and forth columns). Our method applies to simple tubular shapes
with trivial topology such as the Cactus (top), complex tubular shapes such as Fertility (middle), but also to shapes with weak cylindricity,
such as the RockerArm model (bottom).

show a color coded sub sampling of the of the iso-surfaces of
radius, azimuth and height. Differently from [13] our map
is fully explicit, therefore iso-contouring can be trivially
performed with any available implementation of marching
cubes for unstructured meshes.

Multiple tubes. In Figure 9, we show a gallery of results
for tubular models with arbitrary topology. In the first
column, we show the result of the skeleton-driven decom-
position described in Section 6. For each tube, we then
generate a separate cylindrical map. Our method applies
to different classes of shapes, ranging from simple tubular
objects such as the Cactus, tubular objects with complex
topology such as Fertility, but also composite objects with
weak cylindricity, such as the Rocker Arm.

Comparison with Plumber and GCD. In Figure 5, we com-
pare our decomposition with Plumber [31] and the Gener-
alized Cylinder Decomposition [30]. As can be noticed, the
decompositions provided by both these techniques contain
spurious elements which do not have a clear tubular struc-
ture. Our method produces a complete decomposition in
topological tubes. Furthermore, being volumetric, it also
provides the separation interfaces between adjacent tubes

Figure 10: By editing the underlying curve-skeleton, we can control
the cylindrical map. Here, we show two alternative cylindrical maps
for the Femur, obtained by considering a skeleton with three (left)
and one (right) bones respectively. For each example, the height and
azimuth components of the map are shown.

as a by product. This information is not available in the
other techniques we considered.

Skeleton control. The interplay between curve-skeletons
and cylindrical maps can be exploited for interactive mod-
eling. In Figure 10, we show two different cylindrical maps
for the Femur data set, obtained by editing the underlying
curve-skeleton. Indeed, the curve-skeleton becomes a tool
to control the solid map. A number of intuitive interfaces
for skeleton editing exist in literature, both academic [21]

9



Figure 11: We sample the cylindrical parametric space in order to generate four hexahedral meshes with different connectivity: polar (a);
grid-like (b) and mixed (c,d). In the bottom line, we show the sampling pattern on the θρ plane. The volumetric mesh is eventually generated
by extruding the same pattern along the z axis. For the torsion example (d), at each layer we shift the pattern along the θ axis — this
operation corresponds to a rotation in the shape space. Red dots represent the singular vertices of the mesh. As the sampling strategy changes,
singularities move from the core (a) to the surface (b) to the middle (c,d) of the volume. This mechanism allows users to finely control
singularity placement, one of the most critical aspects of mesh generation.

and commercial. We believe that editing the position of
the skeleton points, or adding/removing bones from the
skeleton is a nice and intuitive way to control a solid map.
As future work, we plan to exploit this concept further,
and propose new applications based on this paradigm.

Hexahedral meshing. One of the applications we target is
the generation of hexahedral meshes, which can be refined
for FEM analysis or used as control cages for spline fitting.
The solid map we provide is a powerful tool that enables
for a number of different domain discretization choices that
correspond to different sampling patterns of the cylindrical
parametric space. One of the most difficult aspects in mesh
generation is to control the singularity placement. Using
a cylindrical map singularities can be pushed towards the
interior or the boundary, or placed at an angular distance
w.r.t. the inner axis simply by translating the meshing
pattern along the ρ and θ axis, respectively (Figure 11). For
objects composed of multiple tubes, our meshing strategy
can be complemented by techniques such as [35, 39], which
propose neat methods to define cuboidal structures for
junctions with arbitrary topology.

Shell Meshing. Our solid map can also be used for the
generation of shell meshes and nested meshes for multi-
grid solvers [54]. In Figure 12, we show a simple example
for the Femur data set, composed of three nested shell
meshes completely disjoint to one anther. We obtained such
meshes by filtering the radius component of the map. At
the bottom of the figure, we show the color-coded sampling
patterns we used.

All the hexahedral meshes shown in Figs. 11 and 12 have
been optimized using the edge-cone rectification algorithm
[55].

Figure 12: Shell meshes can be easily generated by filtering the radius
parameter ρ of our cylindrical map. Here, we show a shell mesh
composed of three nested layers of the Femur data set. For the outer
mesh (red) we sampled the portion of parametric space between
ρ = 1 and ρ = 0.8; for the middle mesh (blue) we sampled the space
between ρ = 0.8 and ρ = 0.6; for the core mesh (orange) we sampled
the parameter space with ρ ≤ 0.6. The three meshes are topologically
disjoint to one another.

9. Conclusions

In this work, we extended solid cylindrical maps to any
general tubular shape, with no restrictions on its topology
and morphology. Differently from previous approaches, our
maps are explicit, meaning that the parametric coordinates
are directly encoded in the vertices of a discrete mesh, and
the map can be efficiently evaluated in both directions and
exploited by off-the-shelf algorithms. As a direct conse-
quence our map is much more efficient to evaluate and
does not require customized code to implement standard
operations such as iso-contouring. The generation of a
discrete domain that accounts for the singular and peri-
odic structure of the parametric space is also part of our
contribution.
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Model tris tets bones tsplit tz tρ tθ
Cylinder 2K 19K 1 - 0.09 0.03 0.07
Spring 15K 53K 1 - 1.38 0.40 0.76
Bimba 46K 190K 1 - 17.95 12.96 14.11
Femur 8K 39K 1 - 4.16 1.99 2.98
Femur 8K 50K 3 0.99 1.95 1.16 1.59
Cactus 10K 52K 5 1.02 1.09 0.62 0.84
R.-Arm 28K 115K 6 3.41 4.06 2.20 3.30
Fertility 34K 91K 7 3.15 8.84 4.62 7.03

Table 1: For each model, we show: number of triangles of the input
mesh (tris); number of tets of the output mesh (tets); number of bones
of the curve-skeleton (bones) and times (in seconds) for each step of
the algorithm, that is, tube decomposition (tsplit), computation of

height (tz), radius (tρ) and azimuth (tθ).

Limitations and future work. We observe that shapes with
inner cavities (e.g., a hollow sphere) do not admit a ho-
motopic curve skeleton, hence cannot be processed by our
pipeline. Although in principle it works on any other shape
that admits such a skeleton, our method is intended for
tubular shapes and may lead to non intuitive or excessively
distorted maps for shapes which do not have a clear tubular
structure. We emphasize that the skeleton-driven decom-
position presented in Section 6 is purely topological and,
as such, does not strive to optimize the geometry of the
cut or to align to sharp features (e.g. for CAD models).

Consequently, when very thick
and very thin tubes meet at
a junction point poor (though
still valid) decompositions may
arise, as depicted in the inset
aside. We leave the quest for
good geometric cuts as a future

work. A promising approach successfully exploited in [3]
could be to enrich the smoothing component of our energy
term with geometric measures, such as dihedral angles. Fi-
nally, as explained in Section 7 our map lacks C0 continuity
across adjacent tubes in the azimuth component. We plan
to tackle this problem in future work.

Acknowledgments

This work is supported by the EU ERC Advanced Grant
CHANGE, grant agreement No 694515. Thanks are due
to all the members of the Shapes and Semantics Modeling
Group at IMATI-CNR, and particularly to Silvia Biasotti.

References

[1] M. Spagnuolo, Shape 4.0: 3D shape modeling and processing
using semantics, IEEE Computer Graphics and Applications
36 (1) (2016) 92–96.

[2] X. Li, X. Guo, H. Wang, Y. He, X. Gu, H. Qin, Harmonic
volumetric mapping for solid modeling applications, in: Proc. of
Symposium on Solid and Physical Modeling, 2007, pp. 109–120.

[3] M. Livesu, N. Vining, A. Sheffer, J. Gregson, R. Scateni, Polycut:
Monotone graph-cuts for polycube base-complex construction,
ACM Trans. Graph. 32 (6).

[4] D. Sokolov, N. Ray, L. Untereiner, B. Lévy, Hexahedral-dominant
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