
Eurographics Italian Chapter Conference (2010)
E. Puppo, A. Brogni, and L. De Floriani (Editors)

Tools and Applications for Teaching
and Research in Computer Graphics

Fabio Guggeri, Marco Livesu, Riccardo Scateni

University of Cagliari, Dept. of Mathematics and Computer Science - Italy

Abstract
In this paper we present the work in progress along with some preliminary research results in the field of Compu-
tational Geometry and Mesh Processing obtained by the Computer Graphics Group of the University of Cagliari,
Italy. We focus on the work in mesh analysis by introducing the developement of a lightweight visualization and
processing tool that helped expanding the aims of the group by letting the students from the University move their
first steps in Computer Graphics. We show some results obtained by the group with the focus on the usefulness of
a common framework of reference.

Categories and Subject Descriptors (according to ACM CCS): I.3.5 [Computer Graphics]: Computational Geometry
and Object Modeling—Geometric algorithms, languages, and systems

1. Introduction

As the interest in Computer Graphics (CG) increased at the
University of Cagliari, the need for tools that allowed to ex-
periment and study the topic became stronger and stronger.
While such tools, as MeshLab [CCR08] or OpenFlipper
[ope], are free, versatile and offer a great number of possi-
bilities for the development of mesh processing algorithms,
their complexity makes them quite unfriendly to the new-
comer, not allowing to easily lay hands on every aspect
the term Computer Graphics covers; moreover, teaching can
benefit from tools that allow a direct experimental approach,
where the student has to deal with simple codes with every-
thing in sight, with no interfaces or library calls that can ob-
scure the whole functioning, thus allowing to endure a trial
and error approach when modifying the program code to
see if the results agree with what expected. Finally, the re-
cent research activities carried on by the group focused on
aspects that went outside the scope of the mere Mesh Pro-
cessing; these reasons brought to the development of a sim-
ple and versatile family of applications where each student
or researcher can focus directly on the goal of his/her work,
from rendering to high-level data visualization, without hav-
ing to deal with the complex infrastructures that advanced
tools as the ones cited before are made of. We introduce this
software family in section 2 along with some examples of its
usage in teaching CG, showing experimental results in the

field of mesh processing in Section 3. We conclude listing in
Section 4 the upgrades currently under development and the
desired additional features that are available for students that
want to undertake a path in CG during their undergraduate
carreers, along with a summary of the research projects that
are carried on at the moment of writing.

2. A family of lightweight 3D viewers

The need to coordinate the works of many people and help
students to get acquainted with Computer Graphics prob-
lems has brought to the developement of light, versatile and
easily usable tools for visualization and processing. Gath-
ered under the name of CGView, these projects form a con-
tinuously work-in-progress framework that helps the pro-
grammer to easily focus on each aspect of the problem,
from accessing GPU buffers to the visualization of data. The
CGView family is focused on two main goals: giving the stu-
dent the possibility to view and explore the 3D environment
with direct understanding of the code involved, and allowing
a programmer to develop a mesh processing algorithm with-
out having to deal with complex interfaces. The first goal
brought to the father project, which we will be introducing
in the next subsection; we will later explain in Subsection
2.2 the satellite projects that resulted from the need to sat-
isfy our second goal.

c© The Eurographics Association 2010.

F. Guggeri, M. Livesu, and R. Scateni / Tools and Applications for Teaching and Research in Computer Graphics

Figure 1: High-resolution voxelizations of the Buddha and
Gargoyle models

Figure 2: Section of the Hippo model showing the interior
of the voxelized surface

2.1. The 3D object visualizer

Based on the VCG library for mesh processing [vcg] and the
Qt Toolkit for its interface [qt], CGView is capable of open-
ing and managing other kinds of data such as voxel grids or
topological skeletons.

Mesh visualization

The application can visualize the mesh in every usual pre-
sentation as wireframe, points, flat or smooth shaded and
can add materials into rendering. Moreover it can visualize
all the main informations about the mesh, such as bounding
box, axes (see figure 6), normals etcetera. However, as said
before, the main goal of the application is to give the student
the possibility to experiment and easily add its own work
into the program, so the features are in constant upgrade.

As for mesh processing, the application takes advantage
of the methods provided by the VCG library along with some
added algorithms developed by researchers and students us-
ing one of the satellite applications we will describe in Sub-
section 2.2; we will also show in section 3 some research
results obtained using our framework.

Figure 3: Slice visualization for the Bunny model helps a
visual understanding of the surface

Figure 5: Skeleton visualization using CGView. We show on
the left the result of [CSYB05] and on the right the output
from [ATC∗08]

Voxel management

Aside from mesh processing, CGView can load, manage and
visualize voxel grids and can create mesh voxelizations of
different resolutions, discretizing only the surface of the ob-
ject or the interior according to some user-defined parame-
ters. Figures 1 and 2 show these features along with the pos-
sibility to visualize only slices of the surface for mesh un-
derstanding purposes (Figure 3). The voxel grid data struc-
ture gives the programmer the methods for grid navigation
and topology control, so the programmer has a simple and
efficient tool for voxel processing and results visualization.
Moreover the possibility of saving voxel grids in different
formats can help testing other algorithms such as [CSYB05]
or [GS99].

Topological skeletons

To facilitate works on skeleton extraction and analysis,
CGView can manage skeletons obtained by algorithms like
[ATC∗08] and [CSYB05], helping the understanding and
comparisons. In figure 5 we show an example of skeletons
loaded from different algorithms, offering a way to visually
compare the outputs. We will show in Section 3 some exam-
ples of the usefulness of CGView for the developement of
skeleton extraction algorithms.

c© The Eurographics Association 2010.

F. Guggeri, M. Livesu, and R. Scateni / Tools and Applications for Teaching and Research in Computer Graphics

Figure 4: Example of flood-filling for the discretization of the mesh interior. After the rasterization of the surface (left) the space
is flood-filled from the exterior (center). The complement of this flood-filling joint with the surface forms the discretized interior
(right)

Figure 6: The main window of CGView showing the mesh,
its bounding box and the axes

2.2. A template for mesh processing algorithms

The main CGView application is made up of several pieces
developed by different people in the group. While adding
features results in increasing the complexity of the code, thus
contraddicting with the purpose of supplying the program-
mer with a simple framework, a basic version of CGView
has been kept as a template for future developments. Each
person interested in experimenting or programming a new
feature for the main project is given a simple application that

can only open, visualize and access the 3D mesh: by building
a standalone application for each algorithm the prupose of
simplifying the work of the programmer is satisfied. More-
over, its simplicity has helped the students to move their first
steps in Computer Graphics: as the number of classes and
lines of code is low, the student can take advantage of the
direct correspondance between code and result, allowing to
experiment with ease. As a consequence, the CGView fam-
ily has grown to include all the side projects while the best,
more stable and useful features of such projects end up being
incorporated in the main viewer.

3. Mesh processing and analysis

Research on mesh processing has been carried on using the
tools described in the previous section. We describe here
some algorithms whose development was simplified thanks
to the usage of the CGView template.

3.1. Skeleton extraction using GPU buffers

The idea, presented as a poster at SGP 2010 [GS], is focused
on inferring a 3D curve-skeleton from the informations ob-
tained by the 2D medial axis of each projection on the im-
age plane (see Figure 7). We now give an overview of our
method; due to the possible ambiguity of the term skeleton,
from now on we’ll refer to medial axis for the 2D case. We
assume there is a correspondence between the skeleton and
the medial axes of each projection such that each medial axis
is an accurate representation of the projected skeleton; given
this assumption we compute the medial axes of the projected
mesh from many points of view. Each medial axis is then re-
projected in 3D in order to gather informations in a voxel
grid where each voxel stores a probability of being part of
the skeleton. These values are interpreted as intensity values
in a 3D grayscale image in order to perform an intensity-
driven thinning algorithm to yield the final skeleton.

c© The Eurographics Association 2010.

F. Guggeri, M. Livesu, and R. Scateni / Tools and Applications for Teaching and Research in Computer Graphics

Figure 7: An overview of the idea behind the skeleton extrac-
tion method described in Subsection 3.1. The 3D skeleton is
obtained thanks to the informations of the medial axes of the
shape projections

Medial axis computation

The mesh is looked at from a set of evenly distributed points
on a sphere so that the ambiguity of possible superimposi-
tions is reduced. The mesh is rendered and its silhouette is
extracted from the GPU buffers as a binary image. The me-
dial axis is then computed using [SdB94] and pruned. This is
mainly where having the possibility to easily access the GPU
buffers comes in handy; in CGView is easy to lay hands on
the rendering process so that one can extract the silhouette
of the mesh with little overhead using OpenGL commands.

Voxel grid reprojection

Given the direction of view of each projection, each pixel
in the medial axis casts a ray in the given direction. Such
rays are then rasterized in a voxel grid in a voting fashion:
each voxel value is incremented, stating that the voxel has
now a higher probability of being part of the skeleton. The
GPU depth buffer is used to rescrict the rasterizations to the
interior of the mesh, resulting in a discrete scalar field com-
puted on a voxelization of the mesh. Yet again, GPU access
is simplified by the structure of CGView, while voxel visual-
ization (see Figure 8) and accessing has been borrowed from
the main project with no need for further coding.

Extraction

The grid is then considered as a grayscale image and a thin-
ning algorithm is applied on it. The thinning is intensity-
driven, in a way similar to the ORG algorithm described
in [YCS00]: we first construct a tree representation of the

Figure 8: CGView allows to visualize discretized scalar
fields in voxel grids. In the image we show two different
threshold for a voxel grid computed using the algorithm in
Section 3.1

connectivity of the voxels such that every path intensity is
maximized, then the tree is pruned in order to remove low
valued paths while preserving the topology and the thinness
of our structure. Topological constraints are applied to the
pruning process in order to consider loops that cannot be
correctly described by an acyclic structure as a tree.

Post processing

The skeleton is refined during the final step of the algorithm:
an internal pruning process collapses short internal arcs in
order to merge branching nodes that are too near each other.
An endpoint preserving laplacian smoothing is applied to the
skeletal structure reducing the boundness of each node to
the voxel grid coordinates; the arcs thus obtained are more
visually appealing and more representative of the shape of
the mesh.

3.2. Accelerated Shape Diameter Function

Another work developed with the help of CGView has been
published under the name of Accelerated Shape Diameter
Function [KGMS10]; it is basically a suggestion for a fast
and efficient approximation of the Shape Diameter Function
(SDF) [SSCO08] using the Poisson Equation for the inter-
polation of the values. The main idea behind the Shape Di-
ameter Function is to take into account the volumetric in-
formation of the shape by defining a scalar function on the
mesh representing the diameter of the interior of the object,
similarly to the MAT where the scalar field represents the
distance between each point to the nearest boundary point.
Given a mesh M the SDF is a scalar function on the surface
(fp : M � R) defined as the neighborhood diameter of the ob-
ject at each surface point p ∈M. Such diameter is extracted
by casting a cone of rays from the point p to the interior of

c© The Eurographics Association 2010.

F. Guggeri, M. Livesu, and R. Scateni / Tools and Applications for Teaching and Research in Computer Graphics

the mesh according to the inverse normal at p and comput-
ing the distance between p and each intersection between the
rays and the mesh. The definition is extremely simple and in-
tuitive; the value of the SDF is a weighted average of the ray
lengths: the weights are the inverse of the angle between the
ray to the center of the cone. The authors finally propose a
bilateral filtering step in order to guarantee pose invariance.

Accelerated SDF (ASDF) via Poisson Interpolation

The main contribution of our optimization method is based
on an observation of the behaviour of the SDF function for
regular meshes. On simple meshes the difference between
the SDF value of a primitive (face or vertex) and the SDF
value of its neighborhood is approximately zero for primi-
tives in the same part of the object and it increases smoothly
on the boundaries of the parts. This means that little to none
additional information is obtained by the SDF computation
for a vertex or face whose neighbors have already been eval-
uated. Furthermore, the bi-lateral filtering step proposed in
the original paper lowers the importance of a single com-
putation in the final output. The difference in SDF between
neighboring primitives is higher where the shape changes
sharply: thus, for segmentation purposes, it is possible to ap-
proximate the SDF on the whole mesh by propagating the
function value computed on a small subset of faces. The
mean of propagation we choose is solving a Poisson equa-
tion with Dirichlet boundary conditions, a technique that ob-
tained good results in mesh editing [YZX∗04] and image
processing [PGB03] under similar circumstances. This tech-
nique allows to easily compute a constrained interpolation
over the mesh guaranteeing computational efficiency and ro-
bustness of the results.

Poisson Equation

The formulation of the Poisson equation that we use is de-
fined as follows:

∆ f =∇v with f |∂Ω = f ∗|∂Ω

where f is an unknown scalar function, v a guidance vec-
tor field,∇v is the divergence of v, ∆ is the Laplace operator
and f ∗ defines the values of a known scalar function at the
boundary ∂Ω of a selected region Ω. Solving this equation
allows to reconstruct the unknown function by interpolating
the boundary values so that the gradient of f is as close as
possible to the vector field v, resulting in a smooth and seam-
less propagation that satisfies some user prescribed condi-
tions; our proposal, that resulted in good approximation of
the divergence, was to use the opposite of the curvature on
each face curv(p) (computed as the mean of its vertices’ cur-
vature).

The final formula for each unknown face is:

Figure 9: Computational times in function of the number of
selected faces. The times were taken while processing the
horse mesh.

∑
v∈N(p)

wv f (p)− ∑
v∈N(p)∩Ω

wv f (v) =

∑
v∈N(p)∩∂Ω

wv f ∗(v)− curv(p)

where the Laplacian is computed on the dual graph of the
mesh. The above formulation causes each unknown SDF to
be a function of the known values over the boundary and
the local curvature, whereas a face with no known neighbors
will obtain a value completely dependent on the curvature
variation.

This technique resulted in a good and fast approximation,
allowing to reduce the computational times with a small er-
ror. See Figure 9 for an example of the speedup obtained by
our approach, while in Figure 10 we show the differences
between an accurate and approximated SDF computation.

4. Future improvements and goals

As previously said, the CGView project is continuously un-
der development due to the fact that research and teach-
ing take advantage of the basic template for experimenting,
while desired features for the main viewer are added once
they are implemented by someone in the team. We list in this
section a suggestion of possible improvements that could be
implemented by students willing to dedicate their Bachelor
or Master thesis to Computer Graphics, followed by some
research goals the group hopes to reach in the immediate fu-
ture.

4.1. Possible add-ons for the viewer

CGView is mainly a teaching and research tool, so possible
future expansions should be focused on the knowledge and

c© The Eurographics Association 2010.

F. Guggeri, M. Livesu, and R. Scateni / Tools and Applications for Teaching and Research in Computer Graphics

Figure 10: In this picture you can visually appreciate the
difference between the SDF computed on all the faces and
a subset (10% of the total number). The image on top rep-
resents the result of the computation of the SDF on all the
faces, while the one in the bottom represents the results of
the computation performed on only 10% of the faces. In the
middle image, the differences between the two results are
graphically mapped on the mesh, with blue indicating no dif-
ference and colors towards red indicating larger and larger
differences.

experience they bring to the programmer other than useful-
ness or fanciness, as more powerful and better programs are
already available and by now CGView isn’t going to com-
pete with such tools. Anyway, the viewer lacks support for
textures; as this is a central topic in Computer Graphics,
the viewer would benefit from an implementation of texture
mapping. On the interaction side, it is desirable to have an
added support for a 3D navigation system like 3DConnexion
([3dc]), while mesh processing methods would benefit from

Figure 11: Skeleton-driven segmentation on the Octopus
model.

different face/vertex selection methods that are missing, or
the possibility to open and access more than one mesh at a
time. Finally, on the rendering side, an idea would be the
implementation of different shaders, e.g the Toon Shader.

4.2. Research aims

Currently the work of the CG group is focusing on improv-
ing the skeleton extraction method described in Subsection
3.1 and its uses in mesh partitioning; in Figure 11 some
preliminary results in this field are shown. In parallel, the
group is working on a project that started as a toy problem
but ended up drawing more interest, that is, the application
of chaotic maps to meshes (see Figure 12) for purposes of
cryptography and steganography, as such methods proved
useful for the same goals in the field of image processing
([Jia10], [WRJ∗07], [ZXSH10]).

5. Conclusions

We presented the tools developed by the Computer Graphics
group in Cagliari University and the usefulness they had in
research and teaching. Since the CGView project was born
many students could take advantage of a common frame-
work for their tasks, improving interaction and knowledge
sharing and thus helping to increment the productivity of the
group. The CGView project is nowadays the base for every
work in mesh processing that is being carried on by the re-
search team at the University, and is currently being used as
an experimentation tool in teaching Computer Graphics to
the students.

References

[3dc] http://www.3dconnexion.com.

c© The Eurographics Association 2010.

http://www.3dconnexion.com

F. Guggeri, M. Livesu, and R. Scateni / Tools and Applications for Teaching and Research in Computer Graphics

Figure 12: From left to right, application of the Ikeda map to the points of the Bunny with increasing number of steps.

[ATC∗08] AU O. K.-C., TAI C.-L., CHU H.-K., COHEN-OR
D., LEE T.-Y.: Skeleton extraction by mesh contraction. In
SIGGRAPH ’08: ACM SIGGRAPH 2008 papers (New York, NY,
USA, 2008), ACM, pp. 1–10.

[CCR08] CIGNONI P., CORSINI M., RANZUGLIA G.: Meshlab:
an open-source 3d mesh processing system, April 2008.

[CSYB05] CORNEA N., SILVER D., YUAN X., BALASUBRA-
MANIAN R.: Computing hierarchical curve-skeletons of 3d ob-
jects. 945–955.

[GS] GUGGERI F., SCATENI R.: How to compute a mesh skele-
ton using projections in five simple steps. SGP 2010 Poster ses-
sion.

[GS99] GAGVANI N., SILVER D.: Parameter-controlled volume
thinning. Graphical Models and Image Processing 61, 3 (1999),
149 – 164.

[Jia10] JIA X.: Image encryption using the ikeda map. Intelligent
Computing and Cognitive Informatics, International Conference
on 0 (2010), 455–458.

[KGMS10] KOVACIC M., GUGGERI F., MARRAS S., SCATENI
R.: Fast approximation of the shape diameter function. In GraV-
isMa 2010 Proceedings (2010).

[ope] http://www.openflipper.org.

[PGB03] PÉREZ P., GANGNET M., BLAKE A.: Poisson image
editing. ACM Transactions on Graphics (SIGGRAPH’03) 22, 3
(2003), 313–318.

[qt] http://qt.nokia.com.

[SdB94] SANNITI DI BAJA G.: Well-shaped, stable, and re-
versible skeletons from the (3,4)-distance transform. 107–115.

[SSCO08] SHAPIRA L., SHAMIR A., COHEN-OR D.: Consistent
mesh partitioning and skeletonisation using the shape diameter
function. Vis. Comput. 24, 4 (2008), 249–259.

[vcg] http://vcg.sourceforge.net.

[WRJ∗07] WANG Y., REN G., JIANG J., ZHANG J., SUN L.: Im-
age encryption method based on chaotic map. pp. 2558 –2560.

[YCS00] YIM P., CHOYKE P., SUMMERS R.: Gray-scale skele-
tonization of small vessels in magnetic resonance angiography.
568–576.

[YZX∗04] YU Y., ZHOU K., XU D., SHI X., BAO H., GUO B.,
SHUM H.-Y.: Mesh editing with poisson-based gradient field
manipulation. In SIGGRAPH ’04: ACM SIGGRAPH 2004 Pa-
pers (New York, NY, USA, 2004), ACM, pp. 644–651.

[ZXSH10] ZHANG Y., XIE J., SUN P., HUANG L.: A new image
encryption algorithm based on arnold and coupled chaos maps.
vol. 1, pp. 308 –311.

c© The Eurographics Association 2010.

http://www.openflipper.org
http://qt.nokia.com
http://vcg.sourceforge.net

