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A B S T R A C T

Shape decompositions that are guided by a motorcycle graph endow topological prop-
erties that are relevant for many engineering applications, such as T-spline fitting, shape
compression and structured mesh generation. While for the surface case this is a widely
studied and well-established construction, the concept of motorcycle graph was lifted to
volumes only recently [1]. Due to this recent introduction, the generation of volumetric
motorcycle graphs that fulfill application dependent criteria, such as minimal number
of blocks or high approximation capabilities, is still an open problem. In this article we
study and compare two alternative approaches to the computation of volume shape de-
compositions guided by a motorcycle graph. The proposed methodologies are designed
to optimize alternative application-dependent quality criteria and, overall, perform bet-
ter than prior art in most of the cases.

© 2023 Elsevier B.V. All rights reserved.

1. Introduction1

Decomposing a given shape into an atlas of quadrilateral2

or cubic patches is an important step in many applications in3

graphics and engineering. In particular, non conforming parti-4

tions where patches are adjacent along a portion of an edge or a5

face allow to greatly reduce the overall number of primitives in6

the decomposition. For the surface case, patches are bounded7

by the arcs of the so called motorcycle graph [2, 3], and the8

resulting decompositions are widely used as computational do-9

main for higher order meshing [4], quadrilateral remeshing [5],10

mesh booleans [6], field-aligned surface mapping [7], textur-11

ing [8], and production of knitted models [9].12

The concept of motorcycle graph was lifted from the surface13

to the volume setting only recently [1] and so far it was only14

exploited to perform robust quantization of volumetric Integer15

Grid Maps [10]. Considering the importance and variety of ap-16

plications that are involved in the surface setting, motorcycle17
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graphs promise to be equally useful in the volume setting, sup- 18

porting a natural extension of the same applications for solid 19

meshes. 20

In this work we first observe that the technique presented 21

in [1] allows to compute just one among the (exponentially 22

many) possible motorcycle graphs of a given mesh. Based on 23

this observation, we propose novel algorithms that allow to sys- 24

tematically explore the space of solutions, permitting to find 25

the decomposition that best suits the requirements of the ap- 26

plication at hand. Due to this space size issue, an exhaustive 27

search to find the absolute (global) optimum is often unfeasi- 28

ble. Rather, our approach identifies a practically good local op- 29

timum whose calculation requires a reasonable amount of time. 30

We explore the space of different 3D motorcycle complexes 31

in a constructive manner. We propose two novel methods: 3D 32

motorcycle complex enumeration and sheet swapping, which 33

are based on serial fire growing metaphor introduced in [1]. 34

Inspiration for these novel approaches comes from previous 35

works in 2D [11, 4], which explore the space of non conform- 36

ing four sided partitions by segmenting an input quadrilateral 37

surface mesh. 38

Our experiments confirm that the volumetric extension of 39
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Fig. 1. 3D motorcycle complex as computed in [1] (top) versus an optimized complex computed by our method (bottom). The number of blocks is reduced
by approximately 15%. Relevant differences are highlighted in the closeups on the right, where sheets separating the blocks are shown.

these methodologies produce superior 3D motorcycle graphs1

than [1]. As an example, for the Stanford Dragon shown in2

Figure 1 our best decomposition reduced the number of blocks3

from 220 to 187. More in general, when used for geometry4

compression purposes [12, 13, 14], replacing [1] with our ap-5

proach leads to an average gain of approximately 3 bits-per-6

vertex (bpv), with peaks of 12 bpv for some test models. A7

detailed comparative analysis of our results can be found in Sec-8

tion 4.9

2. Related works10

This paper aims to compute non conforming coarse block de-11

compositions that are aligned with the connectivity of a guiding12

hexahedral mesh. Hexahedral meshes are a prominent volume13

shape representation in graphics and engineering [15]. These14

decompositions are useful both to aid existing hexahedral mesh-15

ing pipelines [10] and for downstream applications, where they16

become a computational domain for the resolution of Partial17

Differential Equations (PDEs) with spline methods [16, 17].18

Literature proposes several approaches for the computation19

of hexahedral meshes, such as adaptive grids [18, 19, 20,20

21], polycubes [22, 23, 24, 25, 26, 27, 28, 29, 30], frame21

fields [31, 32, 33, 34, 35, 36, 37], sweeping along curves or22

membranes [38, 39, 40], and many others. Interactive ap-23

proaches [41, 42, 23] or methods that occasionally introduce24

spurious non hexahedral cells [42, 43, 44, 45, 46] have also been25

explored.26

Each of these methodologies is more or less capable to cre-27

ate meshes whose connectivity admits a good block decompo-28

sition for some application. The notion of good is application 29

dependent, but typically relates to the number of domains in 30

the decomposition, to the ability of each domain to accom- 31

modate a tensor product that approximates the target geome- 32

try well, to the block decomposition to compress a hexahedral 33

mesh that is stored in a smaller amount of space, or to a com- 34

bination of all these criteria. For example, grid-based methods 35

are known to produce poorly structured meshes with high va- 36

lence singularities [20]. As such, they are suitable for Finite 37

Element Analysis (FEA), which operates on each element sep- 38

arately, but are unsuitable for spline methods such as Iso Ge- 39

ometric Analysis (IGA) [17], which demands the existence a 40

coarse block decomposition. Conversely, frame field and poly- 41

cube methods produce much coarser structures, obtained align- 42

ing singular vertices either at mesh generation time or in post 43

processing [47, 48, 49]. 44

Releasing the conformity requirement between adjacent 45

blocks allows to greatly reduce the number of domains, also for 46

complex meshes produced with grid methods. The recently pro- 47

posed volumetric motorcycle graphs [1] can be used to generate 48

such decompositions. Our work is positioned in this new line of 49

research, improving the state of the art by permitting to explore 50

a wider portion of the space of possible non conforming block 51

decompositions, selecting the best suited for the application at 52

hand based on a selected criteria such as minimization of num- 53

ber of blocks [1] and minimization of storage space [12, 13, 14]. 54

Note that many science and engineering applications utilize 55

high-resolution unstructured hexahedral meshes for modeling 56

solid shapes for finite element simulations. These meshes need 57

huge amount of space when stored in a raw format, and encod- 58
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ing their connectivity/geometry allows reduction of the storage1

space needed [12].2

Exploration of Combinatorial Solution Spaces. Regardless of3

the specific application, our algorithm is also loosely related to4

all methodologies that aim to make the exploration of a large5

combinatorial space efficient. This is indeed a fundamental6

computer science problem and an exhaustive discussion of this7

topic is beyond the scope of our paper. Perhaps not too distant8

from our applicative field are the topological methodologies9

used in [50], the branch-and-bound solvers used in [51, 52] for10

layout embedding and tetrahedralization, and the hill climbing11

approach used in [26] to explore polycube segmentations. Our12

enumeration of the motorcycle graphs has also tight analogies13

with the beam search strategy used in [53] to decompose a com-14

plex shape into 3D printable chunks. Decomposition for digital15

manufacturing is indeed an application where similar problems16

often arise, and are solved greedily [54, 55], via sampling of17

the solution space [56] or with other techniques. We point the18

reader to the recent tutorial at Eurographics for a comprehen-19

sive presentation of these and other methodologies [57].20

3. Exploration of Motorcycle Graphs21

Our method inputs a hexahedral mesh M and outputs a fam-22

ily of alternative partitions of it into non conforming cuboidal23

domains. We operate by systematically exploring the space of24

partitions so that, given an application-dependent quality met-25

ric, we can select the best suited for it as the best one among the26

partitions that were created by our algorithm.27

In practice, a partitioning can be thought of as a labeling of28

the hexahedral elements in M, such that hexahedra having the29

same label belong to the same domain. Internal edges and faces30

of M that are incident to hexahedra with different labels define31

the boundaries of the cuboidal domains, jointly forming a Mo-32

torcycle Graph of M [1]. The motorcycle graph is a superset33

of the singular structure of M, which is fully contained in it.34

Consequently, hexahedral cells belonging to the same cuboidal35

domain are always arranged as a regular grid.36

Considering that the space of alternative partitionings is ex-37

ponential w.r.t. the number of singularities in the input mesh,38

exhaustively exploring all possible solutions to locate the global39

optimum is often not feasible. Our major difficulty is there-40

fore to devise computationally feasible methods that allow to41

explore a portion of the space of solutions that is big enough42

and that likely contains either the global or a good local opti-43

mum. Note that our enumeration approach is remarkably dif-44

ferent from the philosophy of [1], which greedily constructs a45

partitioning and then tries to locally modify its structure to re-46

duce the number of blocks. By construction, such an approach47

can only explore the small fraction of the space of solutions48

located around the local optimum that was greedily identified,49

which can be arbitrarily bad for the application at hand.50

In the remainder of the section we first explain how to gener-51

ate a superset of the Motorcycle Graph starting from the singu-52

lar structure of the hexahedral mesh M (Section 3.2) and then53

Fig. 2. Left: a hexahedral mesh with color coded elements that reflect its
topological structure. Right: cutting sheets separating cuboidal domains
are sets of contiguous quadrilateral faces whose incident hexahedra have
different colors.

introduce our two novel strategies to navigate the space of so- 54

lutions, one based on enumeration (Section 3.3) and the other 55

based on swapping (Section 3.4). 56

3.1. Motorcycle Graph Superset 57

The topological structure endowed in the connectivity of a 58

hexahedral mesh M is entirely defined by its singularities. A 59

mesh edge is said to be irregular, or singular, if its number of 60

incident cells is different from 4 in the interior or different from 61

2 at the boundary [15]. Singular lines in the mesh are chains 62

of adjacent irregular edges that traverse the volume from one 63

boundary vertex to another, form closed loops, or meet at an 64

internal (irregular) vertex that is incident to three or more such 65

chains. The number of hexahedra incident to each edge in a 66

singular line determines its valence. 67

A singular line ℓ with valence v defines precisely v cutting 68

sheets that emanate from it and, following the mesh connec- 69

tivity, contribute to partition the volume into disjoint cuboidal 70

components. Cutting sheets, which are propagated from all sin- 71

gular lines separately, can be easily computed with a flooding 72

approach [49, 1]: given a singular edge e ∈ ℓ and a quadrilat- 73

eral face q incident to it, the whole cutting membrane can be 74

computed by progressively conquering the quadrilateral faces 75

that are adjacent to q through a regular edge and that are not 76

faces of a hexahedron that is also incident to q (Figure 2). For 77

singular edges exposed on the surface, applying the tracing to 78

boundary quads does not hurt but it can be avoided, because 79

it simply reduces to flood a portion of the outer surface of M 80

without contributing to its actual decomposition. 81

Cutting sheets emanating from different singular lines may 82

intersect orthogonally at inner regular edges (in a topological 83

sense). Tracing them all and accounting for their intersections 84

yields a conforming cuboidal decomposition of M. This con- 85

struction, called the base complex, can be thought of as the 86

coarsest conforming hexahedral mesh derived from the connec- 87

tivity of M [47, 49] (i.e., each domain is a 1 × 1 × 1 grid). 88

The base complex of M is a superset of all its motorcycle 89

graphs, which are obtained by stopping the propagation of some 90

of the cutting sheets at the intersection with other cutting sheets 91

propagating from different singular lines [1]. 92

As shown in Figure 3 intersections may be of different types. 93

Breaking ties at each intersection, deciding which cutting sheet 94

should be propagated and which one should be stopped, de- 95

fines the structure of the Motorcycle Graph and its suitability 96
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Fig. 3. Intersection types for two cutting sheets (in different colors). Black
continuous and dashed lines depict singular lines and intersections, resp.

for downstream applications. This will be the subject of the1

two methodologies discussed in the next subsections.2

3.2. Search Space for Motorcycle Graphs3

Our tools are designed to explore the space of motorcycle4

graphs that can be generated via a serial sheet insertion strat-5

egy [1], that is, cutting sheets are inserted one after the other6

while maximally expanding them until they hit a previously ex-7

isting sheet. Compared to a simultaneous sheets insertion strat-8

egy, where two intersecting sheet may both be propagated past9

their intersection, the selected search space is obviously nar-10

rower. Fig. 4 illustrates possible cutting sheet configurations11

explored using the serial approach: (a) two orthogonal sheets12

intersect; (b) two coincident sheets (cyan and red) intersect a13

third one (yellow) orthogonally; (c) two orthogonal sheets (red14

and yellow) intersect a third sheet (green) orthogonal to both of15

them. In (d) we show configurations that cannot be obtained16

using our serial insertion strategy, because they involve partial17

propagation of a cutting sheet past an intersection line. Note18

that configurations in (d) are instead supported by [1] through19

a wall retraction mechanism, possibly obtaining solutions that20

are not in our search space. Nevertheless, propagating (partially21

or entirely) two sheets past their mutual intersection leads to22

denser decompositions that, as confirmed by our experiments,23

tend to be less optimal than configurations obtained with serial24

sheet insertion.25

3.3. Enumeration26

Now that the main decomposition tool (cutting sheet) has27

been introduced, it becomes easier to understand why the search28

space for the motorcycle graphs of a hexahedral mesh M is ex-29

ponential. To fix concepts we consider a simple 2D example30

shown in Figure 5. Let us consider two cutting sheets s1, s231

that intersect along a chain of regular edges. Stopping one of32

the two at their intersection lines and letting the other continue33

to separate the mesh elements implies a binary choice (s1 or34

s2?). Now, let us consider other two cutting sheets s3, s4, one35

intersecting s1 and the other intersecting s2, both after the inter- 36

section between s1 and s2 occurs. If we go for s1, then s2 will 37

not intersect with s4 anymore. If we go for s2, then s1 will not 38

intersect s3 anymore. In both cases, the choice s1 or s2 changes 39

the domain for the subsequent choices, thus leading to a com- 40

binatorial explosion in the number of alternative solutions. Not 41

only this, but also the impact that each local decision has on the 42

global final decomposition makes it very hard to take wise local 43

choices to optimize a global desiderata, disqualifying greedy 44

incremental approaches. 45

Conflict Graph. To embrace all possible solutions in our search 46

space, we start from a graph representation of the father of all 47

motorcycle graphs, the base complex, and process it in order 48

to enumerate all our candidate solutions. Hence we construct a 49

graph G as follows: 50

• Nodes: we create a graph node for each cutting sheet ema- 51

nating from a singular line, associating a unique identifier 52

to it; 53

• Arcs: we connect two nodes ni, n j with an arc ai j if the 54

associated cutting sheets intersect orthogonally at a chain 55

of regular mesh edges in one of the configurations shown 56

in Figures 3a, 3b, 3d. The configuration in Figure 3c 57

does not produce an arc in the graph because, as already 58

observed in [1], the two associated cutting sheets do not 59

block each other. 60

For aligned cutting sheets (i.e., sheets sharing same quadri- 61

lateral faces), two separate nodes (one for each) are created in 62

G. The arcs of G encode all the possible conflicts between pairs 63

of cutting sheets, which should be resolved with binary choices 64

as discussed at the beginning of this section. It should be noted 65

that only one arc is added for sheets intersecting each other mul- 66

tiple times, hence the local ordering between two intersecting 67

sheets is always the same at each of their intersections. Starting 68

from this graph we can now proceed enumerating all the possi- 69

ble solutions, which is done as described in the next paragraph. 70

Top-down strategy. Alternative motorcycle graphs are defined 71

as leaves of a solution tree T , which we build incrementally 72

with a top-down approach. We first initialize T with an isolated 73

root node, associating the (un-partitioned) mesh M and the con- 74

flict graph G to it. The tree is then iteratively populated by ex- 75

panding its leaf nodes as far as they can expand. New nodes in 76

T also inherit a copy of the mesh M from their ancestors, en- 77

riching it with new cutting sheets that contribute to the volume 78

decomposition. Eventually, each leaf node in T will contain an 79

alternative decomposition of M (Figure 6). As observed at the 80

beginning of Section 3 decompositions are fully encoded by per 81

element labels. Therefore, to minimize the memory footprint 82

only per element labels are stored, while the original mesh and 83

its topology are memorized only once. 84

Node expansion. Let us consider a generic leaf node n and the 85

conflict graph Gn associated to it. Notice that since the global 86

conflict graph G at the root of T encodes all conflicts in the 87

base complex, the conflict graph Gn will be G at the root and 88
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Fig. 4. Cutting sheet configurations: (a) two orthogonal sheets, (b) a sheet (yellow) orthogonal to two collapsing sheets (cyan and red), (c) two orthogonal
sheets (red and yellow) and a sheet (green) not orthogonal to one of them (red). The configurations in (d) are not generated by the proposed methods in
this paper.

Base Complex Motorcycle Graph #1 Motorcycle Graph #2

Fig. 5. Resolving intersections between separatrices at regular vertices
(white circles) amounts to take a binary decision on which one should stop
and which one should proceed. These decisions globally impact the re-
sulting motorcycle graph. In the middle column s1 stops s2, as a result
the domain changes and the intersection between s2 and s4 does not exist
anymore. In the right column s2 stops s1, as a result the domain changes
in a different way and the intersection between s1 and s3 does not exist
anymore. These domain changes after each local binary choice design an
exponential space of alternative solutions.

a (possibly empty) subgraph of G at any other leaf node of T .1

All nodes in Gn that have at least one conflict (i.e. at least one2

incident arc in the graph) become children of n in T . For each3

child, we enrich the decomposition of M stored in n by tracing4

the associated cutting sheet first. Tracing is performed with the5

flooding approach described in Section 3.2, but flooding stops6

whenever a previously existing cutting sheet is intersected or7

the mesh boundary is reached. All the cutting sheets associated8

to the remaining nodes in Gn are traced afterwards. Sheets cor-9

responding to isolated nodes in Gn are guaranteed intersection-10

free and are readily traced. Sheets corresponding to nodes in Gn11

with at least one conflict are traced only if they do not conflict12

with each other. In case conflicts are found, they are encoded 13

in a novel conflict graph that will be associated to the current 14

child. If no intersections are found, the conflict graph is set to ∅ 15

and the current child will be a leaf. Since each node expansion 16

in the tree resolves all conflicts with its associated sheet, the 17

conflict graph of a child node is guaranteed to be a sub-graph 18

of the conflict graph of its ancestor and will eventually become 19

empty, ensuring convergence. The process stops when the con- 20

flict graphs associated to all leaf nodes of T do not contain any 21

conflict. Intuitively, paths in the tree T define orderings between 22

conflicting cutting sheets, meaning that sheets at the higher lev- 23

els of T have priority w.r.t. the ones at the lower levels. Note 24

that the so generated decompositions are not unique (Figure 6). 25

Duplicated solutions are removed in post processing. The final 26

decomposition can be eventually chosen as the one that mini- 27

mizes the application-dependent metric of choice. An example 28

of exhaustive motorcycle graph exploration for a given hexahe- 29

dral mesh is shown in Figure 7. 30

Multiple Conflict Graphs. The full conflict graph G associated 31

to the base complex is not necessarily connected, as the mesh 32

may contain isolated clusters of intersecting sheets. If this is 33

the case, one solution tree T is generated for each connected 34

component separately. An exhaustive enumeration can still be 35

computed by merging all leaf nodes with a cross-over blending, 36

that is, taking each leaf from a cluster and merging it with each 37

copy of all the leaves of all other existing clusters. Note that 38

this costly operation is necessary only if one wants to explicitly 39

create the whole space of solutions. Conversely, for the sake of 40

detecting the best solution overall, one may exploit the fact that 41
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Fig. 6. Tree representation of the space of solutions for the base complex shown at the top left corner. Cutting sheets emanating from mesh singularities are
numbered from 1 to 8. For each tree node, the conflict graph G encodes the sheets that intersect to one another. Sheets with at least one active conflict are
explored in a dedicated branch, where they receive higher priority with respect to the other sheets in the graph. Nodes highlighted in orange are tested for
mutual conflicts and are inserted only if no intersections are detected. Expanding tree branches until no conflicts are found yields the full space of solutions
(leaves at the bottom of the tree). Note that duplicated solutions may exist (center and bottom right leaves).

cutting sheets in different trees do not conflict to one another,1

therefore merging the best solution in each tree always yields2

the global optimum.3

Pruning. The methodology described so far allows to fully4

enumerate all possible serial motorcycle graphs associated with5

a given input hexahedral mesh M. Considering the combinato-6

rial explosion in the number of solutions, a full exploration is7

computationally feasible only for meshes with a simple singu-8

lar structure such as the Bone model in Figure 7. Similarly to9

recent beam search and branch-and-bound approaches [53, 51]10

we often pruned the space of solutions, deciding to not expand11

all leaf nodes at all levels in order to reduce the amount of com-12

putation. There are different strategies that one can use to de-13

cide which nodes should be expanded and which ones not. In14

our experiments we explored both a randomized approach and a15

preliminary evaluation of the optimization metric, discovering16

that randomization provides a better balance between computa-17

tional cost and quality of the decomposition (Section 4).18

3.4. Swapping19

In addition to the enumeration strategy, we propose here an20

alternative greedy strategy, which is based on the intuition that21

modifying the binary decisions at the intersection between pairs 22

of cutting sheets may increase the quality w.r.t. a target ap- 23

plication. We call this strategy swapping, because indeed this 24

operation amounts to swap the local priority between the two 25

involved cutting sheets. In details, the swapping strategy is im- 26

plemented as follows: we start from a randomly generated mo- 27

torcycle graph. This can be selected among the ones produced 28

by our enumeration algorithm or just created from scratch by 29

growing all sheets together (akin [1]). We then list all the cut- 30

ting sheet intersections it contains and go through this list. For 31

each intersection, we attempt to locally switch the priority, ex- 32

tending the sheet that stopped and stopping the other one in- 33

stead. If the so generated decomposition has a higher quality 34

than the original one the move is accepted, it is reverted oth- 35

erwise (Figure 8). Quality assessment is performed according 36

to the specific target application. In the experimental part we 37

considered both the number of cuboidal elements and the com- 38

pression rate achieved by the decomposition. Nevertheless, this 39

strategy is also compatible with alternative quality metrics and 40

applications. Note that in case the enumeration we compute is 41

exhaustive, the global optimum is guaranteed to be found and 42

the swapping strategy cannot improve the obtained result. In 43

case pruning is used because the space of solutions was too 44
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Fig. 7. Exhaustive enumeration of the motorcycle graphs of the Bone model. The base complex (top left) contains four conflicts (top right, yellow lines).
Since conflicts are independent to one another, there exist 24 alternative solutions, here encoded with 4 bits (b0, b1, b2, b3) and shown in the figure both in
terms of motorcycle graph (middle) and color coded volume decomposition (bottom).
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i

j

i

j

Fig. 8. Swapping the priority of sheets i and j yields two alternative decom-
positions. Our swapping strategy iteratively attemps local swaps, accepting
only the moves that improve the quality of the decomposition, here mea-
sured in terms of number of cuboidal domains.

Table 1. Model names
Models Names

1 2019 - Dual Sheet Meshing: An Interactive Approach to Robust Hexahedralization bone
2 2019 - Selective Padding for Polycube-Based Hexahedral Meshing Chamfer L4
3 2019 - Selective Padding for Polycube-Based Hexahedral Meshing Column
4 2012 - All-hex Meshing Using Singularity-restricted Field fandisk
5 2020 - Cut-enhanced PolyCube-Maps for Feature-aware All-Hex Meshing drill-trace1 1-hh-sat size4
6 2012 - All-hex Meshing Using Singularity-restricted Field hanger
7 2012 - All-hex Meshing Using Singularity-restricted Field joint
8 2019 - Selective Padding for Polycube-Based Hexahedral Meshing Bearing
9 2015 - Practical Hex-Mesh Optimization via Edge-Cone Rectification block out
10 2020 - LoopyCuts: Practical Feature-Preserving Block Decomposition for Strongly Hex-Dominant Meshing cactus
11 2015 - Practical Hex-Mesh Optimization via Edge-Cone Rectification cap out
12 2019 - Selective Padding for Polycube-Based Hexahedral Meshing Double hinge NH
13 2015 - Practical Hex-Mesh Optimization via Edge-Cone Rectification dragon out
14 2017 - A global approach to multi-axis swept mesh generation Example 1
15 2012 - All-hex Meshing Using Singularity-restricted Field impeller
16 2020 - LoopyCuts: Practical Feature-Preserving Block Decomposition for Strongly Hex-Dominant Meshing impeller
17 2016 - All-hex meshing using closed-form induced polycube joint-hex
18 2016 - All-hex meshing using closed-form induced polycube kitten-hex
19 2020 - LoopyCuts: Practical Feature-Preserving Block Decomposition for Strongly Hex-Dominant Meshing lever arm
20 2012 - All-hex Meshing Using Singularity-restricted Field rod
21 2016 - Polycube Simplification for Coarse Layouts of Surfaces and Volumes hand-model out
22 2019 - Selective Padding for Polycube-Based Hexahedral Meshing Gear
23 2019 - Selective Padding for Polycube-Based Hexahedral Meshing Wrench
24 2012 - All-hex Meshing Using Singularity-restricted Field rockerarm
25 2017 - A global approach to multi-axis swept mesh generation Example 3 (partial mesh)

large, swapping proved to effectively improve the quality of the1

output decomposition.2

4. Results and discussion3

Results of the methods proposed in this paper are obtained4

using 15 alternative hexahedral meshes retrieved from Hex-5

alab [58] (Table 1). The following sub-sections describe cost6

functions used to drive the block partitioning, experimental de-7

tails and processing times required by the algorithms.8

4.1. Cost functions9

While our method is agnostic to the specific metric used to10

evaluate the quality of a decomposition, we focused our atten-11

tion on two practically relevant quality criteria: the number of12

blocks (En) and the extent of the compression rate that can be13

achieved on the decomposition (Eg). In both cases optimal de-14

compositions are the minimizers of such metrics. En denotes15

Fig. 9. 3D Coons-based prediction for a vertex p[i, j, k] (red) in a M ×N ×T
grid (corners in blue). Auxiliary points used for the computation are cyan.

the total number of blocks and is trivial to compute. Eg denotes 16

the number of bits-per-vertex which are necessary to encode the 17

decomposed mesh and is computed as follows. 18

Given an M × N × T block with eight block-corners (blue
dots in Figure 9), the position of a vertex p[i, j, k] (in red)
is predicted using 3D Coons patches [59]. Auxiliary vertices
pa, pb, pc, pd (in cyan) are first found

pa = p[0, 0, 0] + i
(p[M, 0, 0] − p[0, 0, 0])

M

pb = p[0,N, 0] + i
(p[M,N, 0] − p[0,N, 0])

M

pc = p[0,N,T ] + i
(p[M,N,T ] − p[0,N,T ])

M

pd = p[0, 0,T ] + i
(p[M, 0,T ] − p[0, 0,T ])

M

then, the coordinates of p[i, j, k] are computed as 19

p[i, j, k] = pab + k
pcd − pab

T
, (1)

where pab = pa + j pb−pa
N and pcd = pc + j pd−pc

N . To compute 20

the geometry compression rate Eg the actual and predicted ver- 21

tex coordinates are quantized using 12-bit integers by bounding 22

the interval in which the coordinates lie [60]. For each vertex 23

coordinate: (1) a bit z is computed, which indicates whether the 24

two quantized values agree (i.e., perfect prediction or not). If 25

they do not agree, (2) a bit s indicating the sign of the error (i.e., 26

sign of the correction vector coordinate) and (3) the magnitude 27

m of the error (i.e., absolute value for the correction vector co- 28

ordinate) are calculated. The Shannon entropy Ez of z, Es of s, 29

and Em of m are then computed as follows: 30

Ez|Es|Em =

Q−1∑
i=0

−(Pi log2(Pi)) (2)

Here, Q denotes the number of values encountered, which 31

is 21 − 1 for Ez and Es, while is 212 − 1 for Em. Pi denotes 32

the fraction of population (probability) of a value, i. log2 is the 33

binary logarithm. Eventually, Eg is expressed in bit-per-vertex 34

(bpv) and is defined as 35
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Eg =
3Ez + r (Es + Em)

nv
(3)

where r is the number of vertex coordinates with wrong (im-1

perfect) predictors among the three vertex coordinates and nv is2

the number of mesh vertices.3

4.2. Experiments4

We tested hexmeshes in Table 1 with various combinations of5

the strategies described in Section 3. Specifically, we consid-6

ered various versions of the enumeration algorithm, applying7

more or less aggressive pruning strategies to bound the num-8

ber of solutions explored. We denote with Ex all such exper-9

iments, where x is an integer number denoting the maximum10

number of leaf nodes expanded at each tree level (chosen ran-11

domly among the existing leaves). Note that this corresponds12

to a beam search strategy with beam width x, with the only dif-13

ference that the x expanded nodes are not the best ones accord-14

ing to some metric but are randomly chosen. For the swapping15

strategy, we applied it both to a randomly generated initial de-16

composition (Swap column in the tables) and we used it in com-17

bination with enumeration, selecting the best decomposition in18

the tree leaves and further processing it with swapping (E50019

+ Swap columns in the tables). For comparative analysis we20

also considered the 3D motorcycle complex algorithm (MC3D),21

which we used launching the original implementation1 with22

a wall retraction option (i.e., ”-mc –allow-selfadjacent –keep-23

singularity-walls”). Note that MC3D only allows to optimize24

for the number of blocks and it does not permit to minimize25

alternative quality metrics such as compression rate.26

Results based on En and Eg are arranged in Tables 2 and 3,27

respectively, which were considered in the experiments sepa-28

rately. Red values indicate the minimum (i.e., best) cost found29

for the decomposition. Perhaps not surprisingly, the combina-30

tion of enumeration and swapping (E500+Swap) achieves the31

best result in the vast majority of cases, outperforming alterna-32

tive approaches. When Eg is utilized as a quality metric, our33

method produces a better decomposition in 23 out of 25 cases,34

whereas MC3D was superior in just one case and equivalent in35

one other case. When En is the reference metric, our method36

performs better than MC3D in 16 out of 25 cases. Setting37

larger beam widths for the enumeration algorithm enables list-38

ing more motorcycle complexes, hence better solutions could39

be obtained. Note that since random pruning is used to limit the40

number of solutions computed, exploring a higher number of41

solutions is only likely to yield a better decomposition, but this42

is not guaranteed to happen. As a counterexample, for model43

4 E1000 outperforms E5000 and E10000. Since MC3D does44

not allow to optimize for compression, its performances for Eg45

were worse than the ones for En. Pictorial illustrations of our46

results are also reported in Figures 1, 7 , 10.47

4.3. Computational Time48

Running times of the proposed algorithms are reported in49

Table 4. Swap n and Swap g refer to the fire swapping algo-50

1https://github.com/HendrikBrueckler/MC3D

Table 2. Results of block partitioning based on number of blocks, En.
Model MC3D Swap E100 E500 E1000 E5000 E10000 E500+Swap

1 12 12 12 12
2 11 11 11 11
3 17 18 17 17
4 22 20 23 22 20 21 21 20
5 51 60 73 69 65 64 59 54
6 22 21 22 24 24 21 21 21
7 28 28 41 28 28 28 28 28
8 66 58 68 62 63 60 60 58
9 98 98 100 99 99 99 99

10 41 43 45 44 43 44 43
11 85 84 105 114 110 95
12 35 33 37 36 36 34 34 33
13 220 191 246 230 241 194
14 153 154 198 183 189 143
15 124 102 102 101 104 101
16 148 146 146 146 156 146 146
17 22 22 24 24 22 22 21 21
18 57 60 100 62 60 60
19 53 54 67 64 62 62 62 54
20 27 22 34 30 37 22 22 22
21 71 71 75 75 74 73 72 71
22 45 39 41 41 41 39 39 39
23 30 29 29 29 29 29 29 29
24 119 123 130 133 135 113
25 168 167 175 175 175 169

Table 3. Results of block partitioning based on geometry compression
rates, Eg, in bit-per-vertex (bpv).

Models MC3D Swap E100 E500 E1000 E5000 E10000 E500+Swap
1 23.1 23.05 23.05 23.05
2 30.6 30.6 30.6 30.6
3 28.77 28.44 28.44 28.44
4 33.2 31.26 32.34 31.47 31.03 31.26 31.3 31.09
5 31.9 30.05 32.62 31.75 30.39 30.1 30.04 30.06
6 22.07 20.25 20.47 20.38 20.27 19.5 19.77 19.5
7 15.58 13.08 14.92 13.87 13.87 13.4 13.44 13.57
8 26.24 21.36 24.32 23.18 22.32 20.78 21.24 20.45
9 37.53 37.69 38.07 37.69 37.69 37.69 38.07
10 35.72 34.86 38.13 37.23 35.57 35.07 34.72
11 44.07 37.08 39.36 39.06 39.35 37.42
12 29.81 29.25 29.03 28.99 29.3 28.85 28.8 28.66
13 31.13 28.81 30.77 30.81 31.18 26.23
14 37.65 34.51 38.01 36.73 37.46 33.67
15 28.75 20.04 23.45 24.49 20.63 18.74
16 41.47 29.52 34.19 36.35 34.36 32.28 33.0
17 21.18 18.58 18.49 18.42 18.15 18.15 18.15 18.15
18 30.15 26.8 27.64 28.4 27.69 27.03
19 35.62 34.66 36.89 36.75 36.36 36.36 35.91 36.17
20 31.62 30.61 30.93 30.52 29.77 29.75 29.64 30.05
21 36.96 34.97 35.45 35.09 35.08 35 34.67 33.86
22 19.93 17.44 18.72 18.41 18.58 17.38 17.45 17.38
23 25.54 24.4 24.83 24.49 24.38 24.49 24.47 24.61
24 33.22 28.29 30.49 32.12 29.34 28.29
25 33.35 31.51 32.12 32.09 31.98 31.16
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Fig. 10. Motorcycle graphs obtained with MC3D [1] and our swapping algorithm. MC3D does not currently support alternative metrics and it only allows
to reduce the domains’ count. For our method, for Rocker Arm (top) we optimized the geometric compression, expressed in bits-per-vertex. For the
impeller (bottom) we optimized the number of domains.

Table 4. Running times (in seconds) for all our enumeration strategies.
Models Swap n Swap g E100 E500 E1000 E5000 E10000

4 6 5 7 10 11 69 188
6 23 31 17 60 110 623 1917
8 155 224 116 364 710 9067 52218

12 7 9 19 96 192 1383 5036
17 4 5 5 19 28 152 424
20 17 26 53 295 553 3015 9911
21 288 347 279 839 1489 3108 60724
22 96 106 419 251 381 1939 4498
23 45 47 49 59 61 138 288

rithm executed based on the cost functions En and Eg, respec-1

tively. Since Swap is purely greedy it has shorter processing2

time compared to the enumeration algorithm, which forms a3

tree graph structure and looks for the best solution in it. Run-4

ning times highly depend on mesh resolution, which directly5

affects the number of faces participating in each cutting sheet.6

As a general rule, the higher the number of faces, the higher7

the computational cost hence the running time. An additional8

source of complexity is linked to the singular structure of the9

mesh. Meshes with a cleaner singular structure yield less cut-10

ting sheets and therefore design a smaller combinatorial space11

of solutions. Meshes with a dense singular structure (e.g., pro-12

duced with grid-based approaches [20]) are much heavier to13

process.14

4.4. Impact of randomization15

Both the enumeration and the swapping algorithm employ16

randomization to prune the space of solutions or to perturb an17

existing decomposition. In this section we report on two ex-18

periments that aim to study the impact of randomization in the19

output solutions.20

In the first experiment we launch the enumeration and swap-21

ping algorithms ten times on the Fan disk (model 4 in Table 1).22

This serves to evaluate how much variance in the results is in- 23

troduced by randomization. For enumeration we considered a 24

fixed beam width of 1000. For swapping we started from a 25

randomly generated volume decomposition. For each method 26

we attempted to minimize both the number of blocks (En) and 27

the approximation error (Eg). As can be noticed from Ta- 28

ble 5 results were very similar across the 10 runs, especially for 29

the enumeration algorithm (En ∈ [20, 21], Eg ∈ [31.02, 31.4]) 30

which explores a good portion of the solution space and is there- 31

fore less affected by randomization. Higher but still acceptable 32

(in our opinion) fluctuations were reported for the swapping 33

method (En ∈ [20, 26], Eg ∈ [31.19, 33.47]). 34

In the second experiment we evaluate the impact of random- 35

ization in the beam search strategy. We considered beam widths 36

of 10, 100, 1000 and substituted our random leaf expansion pol- 37

icy with an alternative policy that is based on ranking leaves at 38

each level according to the energy to be minimized. Results 39

are summarized in Table 6 and can be compared with the ones 40

in Tables 2 and 3 to assess differences with the random expan- 41

sion strategy. Overall, it can observed that optimal decompo- 42

sitions obtained with a cost-based expansion strategy are only 43

slightly better than the ones computed with a randomized ap- 44

proach. However, the cost to pay for this modest increment is a 45

higher computational cost, which is due to the fact that the se- 46

lected cost metric needs to be evaluated a high number of times, 47

introducing a significant computational overhead. 48

4.5. IGA-based domain decompositions 49

As a final experiment with an alternative metric we consid- 50

ered the problem of computing a block decomposition for Iso- 51

Geometric Analysis (IGA), which prefers domains close to reg- 52

ular cubes. We fulfilled this requirement by using a novel qual- 53

ity metric, which is the ratio between the longest and shortest 54

sides of each candidate domain, giving higher score to domains 55

where this ratio is closer to one. This cost function was inte- 56

grated into Swap and tested for models 4 and 8. Cost values 57
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Table 5. En and Eg values for a fan disk model after multiple runs of the
swapping and enumeration algorithms.

Run# Swap n Swap g E1000 n E1000 g
1 20 33.47 20 31.39
2 21 32.56 20 31.20
3 22 31.26 21 31.09
4 26 31.26 20 31.23
5 20 32.14 21 31.02
6 21 32.02 20 31.02
7 23 32.77 21 31.40
8 25 31.19 21 31.40
9 25 31.39 21 31.19
10 20 31.57 20 31.40

Table 6. Results for cost-based enumeration (t : processing time in seconds).
Models Cost E10 E100 E1000

4 En 21 21 20
t 5 11 37

6 En 21 21 21
t 179 1247 7676

8 En 64 64
t 285 2104

17 En 22 22 22
t 19 65 389

20 En 22 22 22
t 86 562 2594

21 En 82 78
t 384 2040

22 En 40 39
t 458 4970

23 En 30 29 29
t 65 117 386

MC3D Ours

Fig. 11. Blocks obtained using MC3D and Swap for Iso-Geometric Analysis
applications. Thanks to a customized quality metric our block decompo-
sition discourages the presence of elongated domains, which are instead
present in the MC3D result.

for the generated block decompositions by Swap were, respec- 1

tively, 86.71 and 247.82. On the other hand, these values were 2

92.33 and 531.6 when using MC3D. Fig. 11 shows the blocks of 3

model 8 obtained using our Swap strategy and MC3D [1]. As 4

can be noticed, MC3D introduced several elongated domains, 5

whereas our method produced better-shaped (i.e., cubic) blocks. 6

5. Conclusion and future works 7

This paper introduces two methods to explore 3D motorcycle 8

complexes for a given hexahedral mesh. Inspired from simi- 9

lar works on exploration of motorcycle graphs for quadrilateral 10

meshes [11, 4] we introduced an algorithm for the exhaustive 11

enumeration of all possible solutions, with pruning possibili- 12

ties to reduce the computational effort and a greedy local swap- 13

ping algorithm that allows to explore the solution space nearby 14

a given starting solution that can be either randomly generated 15

or come from a previous partial enumeration. The results of 16

the proposed methods are validated and compared with those 17

of Bruckler et al. [1], obtaining superior results in the majority 18

of the cases and also opening for the use of customized appli- 19

cation dependent quality metrics . 20

While we are satisfied with the results we obtained in our ex- 21

periments, we also believe that the enumeration approach we 22

implemented creates a useful basis to explore novel heuristics 23

to prune the space of solutions in a smarter way, possibly ob- 24

taining even superior results. To this end, our future works will 25

be focused on exploring this interesting research direction. 26
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