Surface2Volume: Surface Segmentation Conforming Assemblable

Volumetric Partition

CHRYSTIANO ARAUJO *, University of British Columbia
DANIELA CABIDDU *, CNR IMATI

MARCO ATTENE, CNR IMATI

MARCO LIVESU, CNR IMATI

NICHOLAS VINING, University of British Columbia
ALLA SHEFFER, University of British Columbia

(*joint first authors)

$99¢
e b3S
(a) (b) (©) (d) ORI

Fig. 1. Surface2Volume (left to right): (a) Input multi-color surface; (b) inner interfaces generated by Surface2Volume; (c) assemblable parts conforming to the
surface-segmentation; (d) virtual (top) and fabricated (bottom) single-color parts; and (e) assembled target object.

Users frequently seek to fabricate objects whose outer surfaces consist of
regions with different surface attributes, such as color or material. Manufac-
turing such objects in a single piece is often challenging or even impossible.
The alternative is to partition them into single-attribute volumetric parts
that can be fabricated separately and then assembled to form the target
object. Facilitating this approach requires partitioning the input model into
parts that conform to the surface segmentation and that can be moved apart
with no collisions. We propose Surface2Volume, a partition algorithm capable
of producing such assemblable parts, each of which is affiliated with a single
attribute, the outer surface of whose assembly conforms to the input surface
geometry and segmentation. In computing the partition we strictly enforce
conformity with surface segmentation and assemblability, and optimize for
ease of fabrication by minimizing part count, promoting part simplicity,
and simplifying assembly sequencing. We note that computing the desired
partition requires solving for three types of variables: per-part assembly
trajectories, partition topology, i.e. the connectivity of the interface surfaces
separating the different parts, and the geometry, or location, of these inter-
faces. We efficiently produce the desired partitions by addressing one type of

Authors’ addresses: Chrystiano Araujo *, University of British Columbia; Daniela
Cabiddu *, CNR IMATTI; Marco Attene, CNR IMATI; Marco Livesu, CNR IMATI; Nicholas
Vining, University of British Columbia; Alla Sheffer, University of British Columbia
(*joint first authors).

variables at a time: first computing the assembly trajectories, then determin-
ing interface topology, and finally computing interface locations that allow
parts assemblability. We algorithmically identify inputs that necessitate
sequential assembly, and partition these inputs gradually by computing and
disassembling a subset of assemblable parts at a time. We demonstrate our
method’s robustness and versatility by employing it to partition a range
of models with complex surface segmentations into assemblable parts. We
further validate our framework via output fabrication and comparisons to
alternative partition techniques.

ACM Reference Format:

Chrystiano Aratjo *, Daniela Cabiddu *, Marco Attene, Marco Livesu, Nicholas
Vining, and Alla Sheffer. 2019. Surface2Volume: Surface Segmentation Con-
forming Assemblable Volumetric Partition. ACM Trans. Graph. 38, 4, Article 1
(July 2019), 16 pages. https://doi.org/10.1145/3306346.3323004

1 INTRODUCTION

Digital fabrication algorithms are successfully used to create
real-life replicas of virtual models with uniform color and material.
However, users often wish to create objects with non-uniform visi-
ble surface attributes, such as shapes whose outer surface consists
of regions with different color, opacity, or texture (Figures 1, 2).
Manufacturing such objects as a single solid necessitates the use
of multi-attribute, or multi-material, fabrication methodologies, or
after-the-fact surface painting. These approaches exhibit numerous
limitations (Section 2). An appealing alternative is to decompose
models with multi-attribute surfaces into single-attribute volumet-
ric parts corresponding to the different surface regions (Figure 1c);
fabricate these parts independently using widely available single-
attribute fabrication tools (Figure 1d); and then assemble these parts

ACM Trans. Graph., Vol. 38, No. 4, Article 1. Publication date: July 2019.

https://doi.org/10.1145/3306346.3323004
https://doi.org/10.1145/3306346.3323004
cino

1:2 « Aradjo, C. et al

Fig. 2. Surface2Volume facilitates fabrication of multi-material objects
whose parts are created using materials with different opacity (wavy cylin-
der, top), or ones necessitating the use of different fabrication technologies
(table, bottom). Here we use FDM for the plastic base, and milling for the
wooden top. The method produces a single part for the three disjoint regions
labeled as plastic.

together to form the desired object (Figure 1e). The algorithmic
challenge in employing this multi-part fabrication approach is to
obtain suitable model partitions, ones that conform to the input
segmentation and allow post-fabrication part assembly. We propose
Surface2Volume, a new algorithm for computing such segmentation-
conforming, assemblable partitions (Figure 1c).

The partitions we compute associate each part with a single at-
tribute and satisfy a number of key requirements. First, the computed
parts strictly conform to the surface segmentation: the exposed, or
outer, surface of the part assembly reproduces the input attribute-
based segmentation. Second, the produced parts are assemblable:
a user can take the separately manufactured parts and assemble
them into an exact replica of the input model. Together, these two
requirements ensure that the produced parts can indeed be used
for multi-part fabrication. To simplify the assembly process, we
also require the produced parts to allow for simple, linear assembly
trajectories. We aim to keep the original surface segmentation intact
when possible, avoiding unseemly seams through single-attribute
regions, and seek to produce parts that allow for multiple assembly
orders. Finally, to facilitate easy fabrication and assembly, we seek
to produce parts with simple geometry, and avoid creating tiny, and
thus hard to manipulate, parts.

Generating an assemblable partition given a fixed surface seg-
mentation requires computing the connectivity and the geometry
of the part interfaces, or interior surface boundaries between parts.
The requirements above often necessitate forming interfaces with
complex topology and non-trivial geometry (e.g. Figure 1b). Most
prior methods for segmentation conforming assemblable partition
are designed for restricted sets of segmentations and only consider
a limited set of interface geometries and typologies; they conse-
quently fail on more general inputs (Section 2). Yao et al. [2017]
generate assemblable partitions for interlocking furniture, target-
ing inputs whose interfaces are dominated by extrusions of surface
region boundaries. This method fails to produce assemblable parts
when used on more general free-form models (Section 2, Figure 3).
Surface2Volume robustly partitions both free-form and man-made
geometries, and is particularly well suited for inputs that require
less regular and more free-form interfaces.

ACM Trans. Graph., Vol. 38, No. 4, Article 1. Publication date: July 2019.

(949

EY
ala]37¢%

Fig. 3. The CSG engine used by Yao et al [2017] produces an invalid, non-
assemblable partition on an input which necessitates complex interface
geometry (invalid parts highlighted in the close ups). Our result in Figure 1.

Computing a desirable partition requires solving for three types
of unknowns: assembly trajectories, interface topology and inter-
face location. We enable efficient and robust assemblable partition
generation by developing an algorithm that efficiently computes
these output properties sequentially rather than in tandem. We first
predict per-part assembly trajectories that are likely to allow for
assemblable partition by analyzing the input surface segmentation.
We then generate an approximate partition that defines the topol-
ogy and approximates the geometry of the part interfaces using a
tetrahedral mesh of the input model as an underlying discretiza-
tion. We formulate partitioning as a labeling problem, where labels
correspond to parts and the partition energy reflects the proper-
ties we need to satisfy (Section 3.1). We find the desired partition
using a classical graph-cut framework (Section 4.2). Finally, we opti-
mize the geometry of the resulting interfaces strictly enforcing part
assemblability (Section 4.3) using a specialized global-local solver.

Our basic framework aims to partition objects into parts that can
be assembled in any order (e.g. Figure 1) and produces a single part
per surface region. On many inputs, the interaction between the
initial surface regions, allows for only a subset of the corresponding
parts to be disassembled right away (Figure 4). We handle such
inputs using a multi-pass partition process (Section 5). We support
segmentation refinement (Figure 6, Section 6) when necessary to
allow a valid partition, and enable grouping of disjoint regions
sharing the same attribute values into common parts (Figure 2,
bottom, Section 7), reducing part count and simplifying fabrication.

We validate Surface2Volume by applying it to a wide range of
inputs, manufacturing an array of multi-attribute objects using the
resulting partitioned geometries as input, and comparing our re-
sults to prior art (Section 8). Our comparisons demonstrate that
Surface2Volume robustly partitions a vast array of inputs includ-
ing those that fail prior methods. It produces the minimal possible
part count on all the partitioned inputs and performs region split-
ting only when no alternative solution, independent of method,
exists - namely when input surface regions associated with different
attributes interlock (Figure 6).

Our overall contribution is a robust and efficient algorithm that
takes as input closed surface models whose surfaces are segmented
into regions associated with different attribute values and produces
single-attribute assemblable parts that conform to the input seg-
mentation. Our method is particularly well suited for partition of
natural shapes which can only be partitioned using irregular, free-
form interface surfaces.

Surface2Volume: Surface Segmentation Conforming Assemblable Volumetric Partition « 1:3

2 BACKGROUND AND RELATED WORK

We build on existing research in a number of domains, reviewed
below.

Multi-Material Fabrication. High-end 3D printers, such as Z Corp
or HP Jet Fusion, allow simultaneous deposition of materials with dif-
ferent colors or mechanical properties; however they are extremely
expensive and can only combine a limited set of materials. Emerging
research into hybrid technologies that exploit off-the-shelf compo-
nents to reduce costs [Sitthi-Amorn et al. 2015] is not mature enough
for a wide-scale adoption. Two-headed Fused Deposition Modeling
(FDM) machines can deposit two colored filaments at a time, but
cannot support models where three or more colors or materials ap-
pear in the same slice; moreover, using this hardware may introduce
color artifacts which persist even when specially optimized machine
toolpaths for each head are used [Hergel and Lefebvre 2014; Reiner
et al. 2014]. Most commodity fabrication hardware operates on one
material at a time, using a single filament for FDM 3D printing or
carving a single solid material block in a subtractive setting. Our
method is designed to allow users to produce artifact-free objects
consisting of any number of distinct materials using these widely
accessible systems.

A recent line of research investigates methods for painting the
surfaces of manufactured objects, including computational hydro-
graphic printing [Panozzo et al. 2015; Zhang et al. 2015] and compu-
tational thermoforming [Schiiller et al. 2016]. These works operate
by simulating the behaviour of a printed sheet of ink or plastic under
deformation, and are primarily suitable for near-convex, genus-0
objects. Outputs generated this way tend to fade over time and lose
their coloring due to wear and tear. Our method has no convexity
or genus constraints, and our outputs better retain their coloring as
they consist of solid single material parts.

Shape Segmentation. Most surface and volume segmentation meth-
ods focus on the computation of surface charts or volumetric parts
with specific intrinsic part properties and do not account for interac-
tions between them [Ho et al. 2012; Shamir 2008; Sharp and Crane
2018; Strodthoff and Jiittler 2017]. Enforcing assemblability requires
accounting for the interaction between parts, necessitating a more
global solution methodology.

Assemblable Partitions for Fabrication. Volumetric partitioning
has been extensively used to overcome a range of manufacturing
hardware constraints and widen the range of fabrication techniques
applicable to a given input [Livesu et al. 2017; Medeiros e S et al.
2016]. Examples include breaking models into parts which are small
enough to fit into a printer’s chamber [Hao et al. 2011; Luo et al.
2012; Song et al. 2015; Vanek et al. 2014]; generating parts that
can be efficiently packed [Attene 2015; Chen et al. 2015; Yao et al.
2015]; construction of new models by an assemblage of parts from
a database [Funkhouser et al. 2004] or via explicit construction of
interlocking assemblies [Wang et al. 2018]; or enabling the use of
specific fabrication technologies [Alderighi et al. 2018; Herholz et al.
2015; Muntoni et al. 2018; Nakashima et al. 2018].

Our work complements these approaches in its focus on parti-
tioning for surface-attribute-driven multi-material fabrication.

The ability to assemble parts together to form the target model is
a critical requirement for any technique which decomposes mod-
els for subsequent fabrication. Existing methods utilize a range of
strategies to satisfy this requirement. Multiple methods use part
assemblability as the key criterion for volumetric partition [Fu et al.
2015; Lo et al. 2009; Song et al. 2012, 2015; Xin et al. 2011; Yao et al.
2015], and have the surface segmentation emerge from this partition.
Other methods partition the volume and the surface simultaneously
using strategies that ensure assemblability. For example, models
partitioned using cut-through planes [Attene 2015; Chen et al. 2015;
Hildebrand et al. 2013; Hu et al. 2014; Luo et al. 2012] can always
be assembled using an assembly order that inverses the cutting
sequence. Some methods such as [Song et al. 2015] can accommo-
date some constraints on the resulting surface segmentation, for
instance avoiding segment boundaries in certain areas; however,
none of the methods above is designed to incorporate prescribed
surface segmentation boundaries.

Segmentation Conforming Assemblable Partitioning. Zhang et al.
[2016] partition 2D polygons into assemblable parts conforming to
an outline segmentation. As they acknowledge, it is not clear how
to extend their method to 3D space. Several methods create shallow
volumetric parts that correspond to surface segments which satisfy
different restrictive sets of desirable properties, such as limited nor-
mal variation [Herholz et al. 2015; Muntoni et al. 2018; Wang et al.
2016], near planar, simple inter-segment boundaries [Song et al.
2016; Wang et al. 2016], or bounded size [Song et al. 2016; Vanek
et al. 2014]. Given the surface segmentations, they define the parts
by extruding the segments either along a fixed direction to form
flat-based prisms [Muntoni et al. 2018; Wang et al. 2016] or along the
inverse normal direction to form shells [Herholz et al. 2015; Song
et al. 2016; Vanek et al. 2014]. As the authors acknowledge, these ap-
proaches can easily fail given more general surface segmentations.
Offsetting a part along a constant direction fails on
even simple 2D inputs (see inset, top). Regardless
of the offsetting direction, the blue part will span
outside of the domain. Offsetting inwards along
the surface normal direction does not work for
concave objects — parts interlock and do not allow
assembly (inset, bottom). We impose no restric-
tions on the input segmentation and successfully generate assem-
blable partitions that conform to input segments with large normal
variation and complex non-planar boundaries (e.g. Figures 3, 12).

Yao et al. [2017] propose a partition method for interlocking furni-
ture design. This method is best suited for engineered shapes where
the desired interfaces are dominated by linear extrusions. While it
can extend to simple free-form geometries, it fails to partition in-
puts such as the soccer ball or milk-jug (Figure 12) and produces an
invalid partition on the swirl ball, Figure 3 (our result is in Figure 1).
Our framework complements this approach in its focus on more
free-form input geometries, and robustly handles such inputs.

Assembly Path Computation. A vast body of work, e.g. [Agrawala
et al. 2003; Joskowicz and Sacks 1999, 1991; Wolter 1991], addresses
computation of assembly paths or evaluates assemblability of given
part configurations. While these methods analyze existing parts we
focus on computation of part geometries that allow assembly.

ACM Trans. Graph., Vol. 38, No. 4, Article 1. Publication date: July 2019.

1:4 « Aragjo, C. et al

Reconstruction from Slices. A final related area of work are planar-
to-volume interpolation methods, which naturally occur in the case
of reconstructing volumes from sliced data such as medical tomog-
raphy. In these works (e.g. [Bermano et al. 2011; Liu et al. 2008]),
planar slices are marked with an attribute function and interpo-
lated throughout the reconstructed volume. These methods trivially
extend from planar-to-volume interpolations to surface-to-volume
interpolations. While some of these works do attempt to make topo-
logical guarantees (e.g. [Lazar et al. 2018]), these guarantees are
restricted to surface and genus and do not consider the problem of
assemblability.

3 PROBLEM STATEMENT AND OVERVIEW
3.1 Problem Statement

The input to Surface2Volume is a closed 3D surface that is seg-
mented into several regions associated with different attributes. The
algorithm partitions the volumetric object O enclosed by this sur-
face, into a set of volumetric parts that satisfy the following validity
constraints and exhibit the desirable characteristics detailed below.

Partition Validity. Validity requires the output parts to satisfy
segmentation conformity and linear assemblability constraints. Con-
formity necessitates that each part O; € O is associated with a single
attribute, and that the visible portions of parts associated with each
attribute exactly conform to the region(s) R; corresponding to this
attribute on the outer surface of the input object. Assemblability
means that there exists a sequence of collision-free part trajectories
that allows moving the parts away from one another until they
are no longer in contact, or vice versa moving them from disjoint
positions back into the assembly. To simplify the assembly process
and the computation, we restrict the allowable assembly trajectories
to linear motions. The linearity constraint also makes the output
more tolerant to fabrication inaccuracies; assembly along non-linear
paths is likely to be more sensitive to fabrication imprecisions. In
addition to these requirements, to be manufacturable the parts need
to be manifold and self-intersection free.

Formally, a collection of parts O; € O is linearly assemblable if
there exists an order Qy, . .., Oy and a direction d; such that each
part O; can be extracted, or moved, along the direction d; from the
sub-assembly O;, . . ., Oy, without intersecting any of the remaining
parts. One of the key observations behind our method is that this
brute-force assessment of part extractability can be replaced by the
assessment of the following two criteria, illustrated in the inset
below: interface extractability and region extractability.

We define the interface between two parts O;
and O; as the union of points contained in both
parts. Let P; be the set of all the points on the
outer surface of O; which are not on a shared
interface with Oj, j > i. We say O; is region ex-
tractable along a direction d; if a ray shot from any
point p € P; along d; does not intersect any other
part Oj, j > i. We say O; is interface extractable |
along the direction d; if the normal vector n, at
any point p on the interface between O; and any of Oj, j > i sat-
isfies np - d; < 0 (i.e. if they form a non-acute angle). For brevity,
we omit the direction d; where possible in the paper, and simply

ACM Trans. Graph., Vol. 38, No. 4, Article 1. Publication date: July 2019.

say that a part is region extractable if some direction exists that
it is region extractable along; similarly for interface extractability.
A part is extractable if it is both region extractable and interface
extractable (See Appendix A for a proof). In the inset, the yellow and
green parts are region extractable along the indicated directions;
and red and green are interface extractable. Consequently only the
green part is fully extractable. Note that region extractability can
be assessed using the surface segmentation as input alone, and does
not depend on the volumetric partition. This observation allows
us to first compute extractable per-region directions and to then
focus on forming volumetric parts that conform to these regions
and satisfy interface extractability with respect to these directions.

Partition Characteristics. Among all valid partitions, we prefer
ones which are easiest to manufacture and assemble. We aim to
keep the number of parts as small as possible, ideally producing
only as many parts as there are distinct attributes, and refine the
surface segmentation only when no parts are otherwise extractable
(Figure 6). We also seek to maximize the number of parts that can
be extracted, or disassembled, simultaneously at each disassembly
step. Both preferences are motivated by the desire to simplify the as-
sembly process from a user perspective. In particular, simultaneous
extractability makes the assembly process more self-evident, avoid-
ing the need for complex assembly instructions. It also make parts
more tolerant to fabrication inaccuracies. Single order (puzzle-like)
assembly can fail due to inaccuracies in the critical key insertion
stage. Both constraints are explicitly accounted for in our partition
algorithm design. Finally, to simplify both assembly and fabrication
we search for parts with balanced sizes and smooth interfaces. Parts
with smoother interfaces are easier to manufacture and assemble,
while very small parts are hard to manipulate.

Discretization. We define and subsequently optimize the desired
partition properties using a tetrahedral mesh of the input model as
an underlying discretization. For simplicity’s sake, the formulation
presented here and through Sections 4-6 addresses the scenario
where each contiguous input surface region has a different attribute
value. We discuss the extension to scenarios where the number of
attributes is smaller than the number of regions in Section 7.

Given the 3D object O discretized using a tetra-
hedral mesh M, whose surface triangles s € S
and their containing tetrahedra t; € 75 corre-
spond to one of n possible attributes A;, we par-
tition it by assigning each mesh tetrahedron to
a unique part O; € O. We encode conformity by
requiring each part O; to be associated with a given attribute A;
and to contain all surface tetrahedra ts associated with this attribute.
Since we require each part to be manifold, we constrain all tetrahe-
dra incident on surface edges shared by pairs of triangles associated
with the same attribute A; to be contained in O;, and similarly re-
quire any tetrahedra incident on surface vertices surrounded by
triangles associated with the same attribute A; to be contained in
O; (see inset). We ensure the existence of a mesh that allows such
labeling during our initial meshing stage (Section 4.2).

K
K
K
<l
K
K
K]
<
<l

\NANNN
AYAVAYAVAV/

Surface2Volume: Surface Segmentation Conforming Assemblable Volumetric Partition « 1:5

oP ©

Fig. 4. Multi-pass model disassembly process (left to right): initial model;
model after first disassembly pass; second pass; final parts and fabricated
output.

P
) |

Is there any No A
' Resolve interlocking
extiactable configurations
part?

&
<
As-extractable-as-possible > i
lYes
o [

decomposition
Extract extractable parts Completel
and include them in the | == disass:mbl::i?

output partition

Fig. 5. Multi-pass disassembly algorithm.

We express our preference for interface smoothness and part size
balance via the following partition quality measure:

Ep=) A% oy %d(t,si),)

fel i teO;

Here f € I are mesh faces located on the interfaces between different
parts, A(f) is the area of face f, A’ the average mesh face area, V(¢) is
the volume of the tetrahedron ¢, V' the average volume of the mesh
tetrahedra, S; is the set of outer surface faces associated with the
attribute A;, and d(t, S;) = mingeg, |t — 5| is the minimum distance
from the centroid of t to S;. The first term promotes partitions
with more compact and thus smoother interfaces. The second term
balances part sizes by penalizing partitions that associate tetrahedra
far away from each given surface region with the attribute value
of that region. We empirically define o = 3(A/V)2/? where A is the
model’s surface area and V is volume. This scale factor seeks to
balance the terms in a resolution independent manner.

3.2 Algorithm Overview

The input to our disassembly process is a closed manifold surface
mesh S segmented into n connected regions S;, each associated
with an attribute A;. Its output is a valid partition designed to satisfy
our desired characteristics. While in general we aspire to segment
the input model into parts in one go, many inputs can only be
assembled or disassembled gradually, a subset of parts at a time
(Figure 4). We address such models by embedding our core partition
algorithm within a multi-pass disassembly process, designed to
compute partitions gradually.

Multi-Pass Disassembly (Figure 5). Each iteration of our disassem-
bly process computes a partition of the current model that maximizes
the number of simultaneously extractable parts as described below
(Section 3.2.1). It then checks which of the resulting parts can be

Fig. 6. Interlocking configurations: the surface regions on this input are not
region extractable, but splitting the dragon’s body into two regions allows
for a valid partition.

extracted, removes them from further consideration, and includes
them in the output partition. If the model is only partially disassem-
bled at the end of this iteration (Figure 4b) it treats the remaining
solid as a new input model with a surface segmentation defined as
described in Section 5 and conducts the next disassembly iteration
on this input (Figure 4c). If at the end of an iteration none of the
parts were removed, it employs one of the interlocking resolution
strategies detailed in Section 3.2.2. The process terminates when
the model is fully disassembled.

3.2.1 As-Assemblable-As-Possible Partitioning. This main step of
our method seeks to partition the given input into surface conform-
ing parts, maximizing the number of simultaneously assemblable
ones. Optimizing for multiple pieces at once allows us to create
various assembly alternatives, making the process easier than single
sequence (i.e. puzzle-like) decompositions. Moreover, as observed
in [Muntoni et al. 2018], optimizing for a specific assembly sequence
increases the risk to create too thin or too fragile pieces, because at
each step the space of extractable configurations becomes smaller.
Computing the desired partition using our underlying discretization
requires solving for three sets of unknowns: the extraction direc-
tions of each part; the discrete mesh partitioning, or assignment of
mesh tetrahedra to their corresponding parts; and the geometry, or
vertex positions, of the interfaces, or shared boundaries, between
these parts. This problem contains a mixture of discrete and contin-
uous variables, which are practically impossible to optimize for in
tandem. Surface2Volume efficiently achieves a desirable partition
by uncoupling these variables and solving for one set of unknowns
at a time.

It first identifies feasible, or region extractable parts, by analyzing
the input surface regions and computes initial per-part directions
for these feasible parts (Section 4.1). The computed extraction direc-
tions satisfy part region extractability and maximize the likelihood
of the resulting volumetric parts being extractable. It then com-
putes a discrete mesh partition that seeks to maximize part interface
extractability with respect to these directions (Section 4.2). This dis-
crete partitioning step defines the connectivity of the part interfaces
and their approximate locations. Finally the method optimizes part
extractability by modifying the geometry of the interface surfaces
between them (Sect. 4.3). After the discrete partitioning terminates,

ACM Trans. Graph., Vol. 38, No. 4, Article 1. Publication date: July 2019.

1:6 + Araujo, C.etal

the topology of the interface surfaces is fully determined, allowing
for interface optimization to be formulated entirely in terms of in-
terface vertex locations. This step no longer requires the underlying
tet mesh, as the parts are fully defined by the outer surface and the
interfaces.

3.2.2 Resolving Interlocking Configurations. Our partitioning step
may converge to partitions in which none of the parts is assemblable,
blocking further processing. Such interlocking will occur when the
input surface segmentation does not allow for an assemblable par-
tition in general; this is for instance the case in Figure 6. In this
example none of the input surface regions are region extractable,
thus volumetric partitioning with the current region configura-
tion is not even attempted. When this scenario is encountered our
method proceeds to segment one of the surface regions into region
extractable sub-regions (Section 6), associates them with distinct
new attribute values, and repeats the partition algorithm on this
input.

The failure to compute any assemblable parts may also be due
to our default approach, which seeks to maximize the number of
parts that can be assembled in no particular order by enforcing
assemblability constraints on all feasible parts at once. While this
approach works well for many inputs, it can fail on inputs which
only support partitioning with highly restrictive assembly order
(Figure 9). Thus when as-assembable-as-possible partition fails on
inputs with region extractable regions, our method explores the
sequential assembly option, computing one assemblable part at a
time (Section 5).

4 AS-ASSEMBLABLE-AS-POSSIBLE PARTITIONING
4.1 Direction Initialization.

We compute per-region extraction directions using brute-force re-
gion extractability assessment over a discrete set of possible direc-
tions. When no direction exists that makes the surface region S;
region extractable, we classify the part O; as infeasible. We use I’
to denote the set of feasible parts.

We assess region extractability with respect to a discrete dense
set of directions. We use a unit-radius, uniformly triangulated sphere
3 to represent a sampling of all the possible extraction directions,
i.e., each vertex d in ¥ defines a possible direction (in our imple-
mentation, ¥ has 4096 vertices.) We augment this set of directions,
and the corresponding sphere mesh, by including frequently seen
normal directions on the input model (a normal direction is deemed
to be frequently seen if it is shared by at least 1% of the input surface
triangles, measured by area) and the major axis directions.

A surface region S; is region extractable along a direction d if
all its triangles are extractable along this direction. We compute
the extractability x; 4 of a triangle t; € S; with respect to a di-
rection d by shooting rays from the triangle’s vertices along d and
checking whether they intersect a region S, with [# i. If an inter-
section occurs, the triangle is obstructed and we set xi_4 to false,
otherwise xy_g is true. Since we want per-region directions that
facilitate volumetric partitioning, rather than only requiring each
region to be extractable as a zero-thickness surface, we want an
epsilon-thick shell formed by offsetting the interior vertices of each
region inward along the normal to be extractable along the selected

ACM Trans. Graph., Vol. 38, No. 4, Article 1. Publication date: July 2019.

directions. Specifically, we offset vertices in the interior of each
region by 10% of the average edge length along the inward pointing
normal, and reapply the extractability test to these offsetted vertices.
We identify a region’s direction as feasible if all vertices pass this
test.

Given multiple feasible extraction directions
per region, we prioritize those most robust to fab-
rication inaccuracies and numerical errors. Specif-
ically, we prioritize directions which are maxi-
mally away from the closest infeasible direction
(see inset). Intuitively these directions are the least
sensitive to numerical errors in the intersection
test above, and are also more tolerant of subse-
quent fabrication errors. We select such most robust directions using
the sphere mesh X. We compute the dual mesh 3’ of 3, also embed-
ded onto a unit sphere: facets in 3’ that correspond to extractable
directions in ¥ form a (possibly disconnected) region R. We select
the direction furthest from the region boundaries.

4.2 Discrete Partitioning,.

Meshing and Part Initialization. We compute the initial uniformly
sized tet mesh M using Delaunay tetrahedralization of S with
volume-constrained mesh refinement [Si 2015]. When this step splits
surface facets, we update the facet attributes to maintain the location
of the input region boundaries. We seek to partition the tetrahedra
of this mesh into manifold parts conforming to the surface regions.
To this end we require tetrahedra incident on edges or vertices in
the interior of each region to be associated with this region; thus if
a tetrahedron has faces, edges or vertices inside different regions,
we split it separating the conflicting lower-dimension simplices.
We then initialize the volumetric parts by assigning all tetrahedra
incident on faces, interior edges, and interior vertices of each region
to that region’s part.

Mesh Partition. We aim to partition the input mesh M into parts
O; such that the feasible parts are maximally interface extractable
with respect to their respective directions d;. Since discrete parti-
tioning alone is unlikely to produce fully extractable parts, we refor-
mulate interface extractability as a soft rather than hard constraint
and introduce an extractability cost function that is minimized by
discrete partitions which are likely to lead to extractable parts after
the interface geometry optimization step (Section 4.3).

Extractability Cost. We define the extractability cost as follows.
Recall that a part O; is interface extractable with respect to an
extraction direction d; if the outward normals along its interfaces
point in the opposite direction to d;. We recast this constraint as a
soft cost function by integrating the amount of violation along the
interface triangles f that bound feasible mesh parts:

_ A(f) i
Ep = Z Z T max(0, n - di) ()
iel’ feF;
where F; are the interface faces of part i and n. is the outward

pointing normal of f with respect to part i. Note that this sum
counts faces on the interface between feasible parts twice, once for
each part. When this cost is zero all feasible parts are extractable.

Surface2Volume: Surface Segmentation Conforming Assemblable Volumetric Partition « 1:7

(a) (©)

Fig. 7. As-assemblable-as-possible partition: (a) input object; (b) initial directions and mesh partition interfaces (alternative view in top inset); (c) partition
with optimized interfaces (alternative view in bottom inset); (d) final parts and printed object. Where mesh partition interfaces are shown, blue represents
triangles that are extractable, and yellow represents triangles that are not extractable.

However this cost function alone is not suffi-
ciently discriminative in distinguishing between
partitions where the violation is due to local vari-
ation in triangle normals (inset, top), and those
whose interfaces are consistently misoriented (in-
set, bottom). While in the former case a local per-
turbation of interface vertex positions is sufficient
to obtain an extractable partition, in the latter sce-
nario making the part extractable would require
significant change in vertex positions. We distin- —
guish between these scenarios by leveraging an

additional property of extractable parts. We note

that if a part O; is extractable, then it is entirely

contained in the volume formed by sweeping its

corresponding surface region S; along the inverse of the projection
direction d; (delineated by dashed lines in the insets). We refer to this
requirement as the in-channel condition. This condition is satisfied
in the top example, and is significantly violated in the bottom one,
though the value of Eg/ is exactly the same in both cases. We use
the in-channel property to differentiate between partitions that are
“almost” extractable and those likely to require more major changes.
Our combined cost function Eg penalizes both inextractable inter-
face faces and faces which are outside the part channel:

- di) + IC(f,)] ®)

ZZA(f)

i€l feF;

Here IC(f, i) = 0 if the face satisfies the in-channel condition with
respect to part i, and is a constant k¢ > 0 if it is does not (kjc =5
in our implementation). To compute IC(f, i) we shoot a ray from the
centroid of f along the direction d;. If the ray intersects a surface
triangle outside the region S; then the triangle is marked as outside
the channel (we use the centroids rather than corners to allow some
leeway in the channel assessment).

Partitioning. We cast our partition goal as optimizing a combined
cost function which accounts for both extractability and overall
partition quality:

(I)(M,D) =Ep + WpEP

o di) +IC(f,)]

=ZZ (f)

i€l’ feF;
A V(t)
+ap f voy Y o deS)) (4)
fel i teO;
We set wp = 0.1, prioritizing extractability over part quality.

Computing a mesh partition that minimizes this function amounts to
solving a classical multi-cut problem on the dual graph of the mesh
M, whose nodes represent tetrahedra and whose arcs correspond
to shared faces between these tetrahedra. An arc is cut if its two end
nodes correspond to differently-labeled tetrahedra in M. Finding
an optimal partition is equivalent to finding a cut that minimizes
a sum of unary costs (i.e. the cost of labeling a node/tetrahedron
with one of the attributes) plus a sum of binary costs (i.e. the cost
of labeling an arc/adjacent tetrahedra with two of the attributes)
[Boykov et al. 2001]. Specifically, the function ®(M, D) dictates
the following binary cost of assigning labels [;,[; to the pair of
tetrahedra t;, tj that share an internal facet f:

o ~ 0 ifl; =1; 5
cut(f) = AD Lo, +®L () +@L ()] otherwise ©)
where
; B max(0, n -di) +IC(f,i) ifiel
Dey(f) = { 0 otherwise ©

The unary cost is dictated purely by our partition quality metric
and is defined as

V()

Dcompl(t, i) = wpwvd(t, Sp), 7)
for each tetrahedron t and label i. To compute a labeling that opti-
mizes the combined cost function, we use the gco-v3.0 multi-label
optimization code [Boykov and Kolmogorov 2004; Boykov et al.
2001]: since this problem is NP-complete, the gco-v3.0 code exploits
advanced heuristics to find an approximate solution in a reasonable
time.

ACM Trans. Graph., Vol. 38, No. 4, Article 1. Publication date: July 2019.

1:8 « Araujo, C.etal

Fig. 8. Interface optimization for the apple in Figure 7 (left to right): in-
terfaces produced by the discrete partition stage, interfaces after initial
smoothing, after the first optimization iteration, final extractable interfaces.
Green areas indicate higher extractability error; blue areas are extractable.

Enforcing Manifoldness. Our subsequent interface optimization
step expects the interfaces between any two adjacent parts to be
two-manifolds with boundary. While most of the time the result
of the discrete partitioning as performed so far satisfies this as-
sumption, it may occasionally contain singularities. We eliminate
such singularities by processing each interface between two of the
parts independently, turning it into a manifold if it is not one yet by
duplicating vertices and edges as necessary [Guéziec et al. 2001].

4.3 Interface Optimization

Having found a discrete mesh partition, we proceed to optimize
the geometry of the interfaces between parts. The core goal of the
optimization is to strictly enforce interface extractability for all
feasible parts. Its secondary goal is to smooth these interfaces to
produce easier-to-manufacture parts while retaining the current
parts sizes. Since the current interface locations are expected to
satisfy the relative size criterion, we account for size implicitly by
seeking to keep the interface vertices close to their current locations.
We formulate these goals as:

. 7 ~ ’ 1 ’
glél]l,EOZ aZ (va—va)2+(1—(x) Z (UH_W,Z vb)z

vy el vy el e€N(a)
s.t.
n} -d; <0, Viel' \NfeF,
vé = 0q4 Ya € B

where 0, are the vertex positions along the interfaces produced
by our discrete partition step, v/, are the unknown interface vertex
positions we seek for, N(a) are the vertices immediately adjacent to
vertex a, n’. are the outward pointing interface facet normals defined

with respect to part i, and B is the set of vertices on the boundaries
between the interfaces and the outer surface of the input model.
The first component promotes fidelity with respect to the discrete
partition solution. The second promotes smoother part interfaces
with well-shaped triangles. The parameter & balances the two com-
ponents and is set to 0.85 in all our experiments. The inequality
constraints ensure that each interface facet is extractable with re-
spect to its associated extraction direction d;, and the equalities
ensure that the input surface geometry is preserved.

While the objective function we wish to optimize is quadratic,
our inequality constraints, when expressed as a function of the un-
known vertex positions, are non-linear and hard to enforce using

ACM Trans. Graph., Vol. 38, No. 4, Article 1. Publication date: July 2019.

off-the-shelf approaches. We efficiently compute a desired solution
by employing a dedicated solver that leverages the specific charac-
teristics of our problem. We first drop the inequality constraints and
compute vertex locations v’ that minimize our energy function E,,
subject only to the equality constraints (Figure 8c); we then focus
on satisfying the inequality constraints while minimally deviating
from this initial less constrained solution.

This first relaxed minimization step requires solving a simple
quadratic optimization problem with linear constraints. We obtain
the desired minimizer by solving the corresponding linear system
using Cholesky decomposition. In theory this step could increase
the number of violated per-triangle constraints. However our initial
interface meshes are often very jaggy with multiple triangles sig-
nificantly violating the extractability constraints. In practice, after
the first minimization step which smoothes the interface surfaces,
both the number of violations and the amount of violation decreases
(see Figure 8bc), making subsequent optimization more stable. Since
the vertex positions v’ of our relaxed solution minimize the energy
E, subject to the equality constraints, we now focus on locating
the closest surface to this solution that satisfies all the constraints,
including the inequalities.

We formulate both the inter-surface differences
v/ and the extractability constraints in terms of per-
triangle transformation gradients [Sumner and
s Popovi¢ 2004]. For each interface triangle f with
o of f if if _

vertices U,V .Uy WE introduce a vertex U3

'f

vy + ng (where ng is the normal to the triangle) and use it to

'f 'f of _

define a local coordinate frame V. = v, — ’Uéf, (R véf, v, — U3
(see inset). We express the per-triangle coordinate frames Vy of the
output interface triangles in terms of the unknown output vertex
locations using a similar formulation (see [Sumner and Popovié¢
2004] for details). Given these two sets of coordinate frames, we
express our goal of minimizing the difference between the input
and output interfaces as minimizing

-1
Ec= >, WV =Illp.
iel’,feF;

where I is a 3x3 identity matrix and ||||f is the Frobenius norm.
Optimizing this energy subject to the boundary vertex placement
constraints v = 9,Ya € B reproduces the initial smoothed inter-
faces. We incorporate the non-linear inequality constraints into
this formulation using a combination of two techniques: active set
optimization and linearization.

Following a traditional active set approach [Nocedal and Wright
2000], we convert the inequality constrains n, - d; < 0 that encode

f
extractability into equality constraints n}-d ; = 0that encode normal
orthogonality and selectively enforce these constraints on only a
subset, or active set, of the interface triangles, those most prone
to violate our inequalities. We initialize this active set A with the
triangles on the current interfaces that violate the extractability
constraints. We then solve for an interface where the orthogonality

Surface2Volume: Surface Segmentation Conforming Assemblable Volumetric Partition « 1:9

constraints are enforced only for the active set:

. r—1
min V7TV =il
iel’,feF;
Vg = v, Va € B.

s.t. n}~d,~ =0, VfeA,

If any new triangles currently outside the active set violate the
extractability constraints after solving the above problem, we add
them to the set A and repeat the process. The second technique we
employ is linearization: instead of enforcing the non-linear orthog-
onality constraints for the triangles in the active set directly, we
satisfy them gradually using an iterative local-global approach that
seamlessly fits into our active-set strategy.

Local Update. At each local update step we first augment the
active set with any interface triangles not in the set that violate the
extractability constraints with respect to one or both of their part
extraction directions. Then, for each triangle in the set, we compute
a minimal rotation R/ such that the rotated triangle rRf f satisfies
our extractability constraints. Assuming n is the triangle normal
and dj, dy are the part extraction directions, we first compute a
new target normal n’ that satisfies the orthogonality constraints by
solving

argrr’lli,n ln—n’||?
s.t.

n-di <0
-n’-dy <0

If the triangle is bounded by an outer surface edge, we constrain
the new normal to be orthogonal to this edge. We split all triangles
with two boundary edges to avoid over-constraining our system.
We use the Gurobi solver [Gurobi Optimization 2018] to compute
the new normals. This step is very fast since the problems solved
are very small. We do not enforce ||n|| = 1 as this constraint makes
the problem much harder. If the solver fails or returns a zero length
vector, we set n’ = n (this may happen sporadically in earlier solver
iterations). Given the new normal n’ we compute R/ as the minimal
rotation that aligns the current normal n with n’.

Global Update. Our global update step reconciles the local rota-
tions computed for the active set triangles while minimally changing
the interface triangle gradients overall. We formulate these require-
ments as follows:

. -1 -1
min > GelViT Ve = Tlle + 3 gl Ve = Rl
iel',feF; feA

Vi € B.

’
s.t. vV = U;

The weights ¢ are set to 1 for triangles outside the active set. For
triangles in the set we set ¢y and ¢ as follows to account for the
degree to which we want to enforce each individual per-triangle
constraint. The weights are dependent on both our confidence in
the computed rotations R/ and the relative amount of extractability
violation of each individual triangle. Specifically, while we expect
the final output normals to be roughly similar for adjacent triangles,
our independently computed per-triangle rotations may produce
highly divergent normals for adjacent triangles, in the extreme

cases producing rotated adjacent triangles with opposing normals.
To promote more consistent output normals we associate each active
set triangle with a confidence weight of computed as the average
difference between the normal of the transformed triangle RS f and
the normal of its transformed neighbors RN: FIN(f). We compute
the current extractability error for each active set triangle as ey =
max(0, n’. -d;) and compute the intensity of its error i as the ratio of

f

er and the average extractability error across all active set triangles.
We consequently set ¢¢ = (1 —cf) and y/f = A x cf * i, assigning
a higher weight to the orthogonality constraints for triangles with
higher confidence and higher error (we set A = 1000). This step
uses a simple quadratic minimization, enabling easy and robust
computation.

Reference Mesh Update. Given a global solution, we could theoret-
ically update the transformations applied to the active set triangles
and repeatedly iterate in a manner similar to deformation frame-
works such as ARAP [Sorkine and Alexa 2007]. Unlike these settings,
however, our key consideration is strictly satisfying extractability,
at the expense of deforming the input mesh if necessary. We there-
fore do not update the transformations directly and instead update
the reference mesh after each iteration. We replace the reference
mesh’s vertex positions with those obtained from the most recent
solve, setting vlf = v; for all interface vertices. We then perform
local Laplacian smoothing of vertices incident on triangles with
degenerate angles or excessive Laplacian deltas. We do not move
vertices if doing so increases the maximal constraint violation or
would produce an intersection with the model’s outer surface.

Termination. The method terminates once one of the following
conditions is met: all constraints are satisfied and all parts are ex-
tractable (that is, once n-d; < € for all interface vertex normals with
respect to all their bounded parts, we set € = 0.02); the optimiza-
tion converges (i.e. the maximal change in vertex positions drops
below 107%; or the number of iterations exceeds a fixed maximum
(30 iterations in our setting). The two latter scenarios occur in our
experience in the rare instances when the feasible parts cannot be
made extractable along the specified directions.

5 MODEL UPDATE

If at the end of the interface optimization step all parts are assem-
blable, the process terminates. If after the optimization is complete, a
subset of the parts is assemblable, these can be extracted, or removed
from further processing (Figure 4b). If only one part remains, it is
assemblable by default; otherwise, the union of the remaining parts
defines a new model we need to partition. The outer surface of this
model consists of the original surface regions of the remaining non-
extractable parts and the newly exposed interfaces between these
remaining parts and the extracted ones. To process this model we
first must update the surface segmentation, associating the newly
exposed interfaces with one of the subsequently formed parts. While
the interface surfaces can theoretically be included in any of the
final output parts, their current segmentation is already induced by
the previously computed as-assemblable-as-possible partition, and
this is suggestive of the respective surface segmentation. We there-
fore temporarily associate each exposed triangle with the label of

ACM Trans. Graph., Vol. 38, No. 4, Article 1. Publication date: July 2019.

1:10 « Aradgjo, C. et al

its containing tetrahedron, and either confirm or modify this initial
association using information from the adjacent surface regions. In
a first pass, we iteratively grow each neighboring region S; onto
the exposed interface to cover all the triangles which are temporar-
ily labeled as S;, whose association is confirmed. If some of the
exposed triangles remain unconfirmed, we re-associate them with
the closest region’s attribute (using surface distance). The output of
this step is a segmented surface mesh with attribute values specified
for all surface triangles (Figure 4b). This approach guarantees that
no new surface regions are added, whereas the initial temporary
association may contain disconnected attribute islands. We rerun
the Surface2Volume algorithm (Section 3.2) on this new input, gener-
ating a new tet-mesh and performing the partition step from scratch
(Figure 4c). The new volume meshing is necessary as we want the
tet mesh to reflect the newly exposed interface boundaries.

Sequential Part Extraction. If the method converges to a partition
with no extractable parts (Figure 9(a)), rather than trying to compute
assemblable parts for all feasible surface regions at once, we explore
the option of extracting one part at a time. To facilitate such sequen-
tial extraction we locate a currently non-assemblable, feasible part
that is most likely to become assemblable with minimal changes. To
find such a part we order all feasible parts based on the percentage
of their interface area that is not extractable after optimization, and
process them in increasing order of non-extractable area, seeking to
locate one that can be extracted in isolation with minimal changes
to its geometry.

For each examined part we compute a locally best partition by
marking this part as feasible and all others as not feasible, and
re-applying the partition algorithm in Section 4. In this setting,
the partition criteria used are dominated by the extractability con-
straints with respect to this part only, maximizing the likelyhood
of producing an extractable part. Once we obtain a part that is ex-
tractable (Figure 9(b)), we remove it and repeat the partition process
on the remaining model as described above (Figure 9(c)).

(b)

Fig. 9. Sequential part extraction: (a) input with two region extractable re-
gions (orange and green) which can not produce simultaneously extractable
parts; (b) first part extracted using sequential extraction (green); (c) final
parts after second partition iteration.

6 SEGMENTATION REFINEMENT

If all surface regions are infeasible (all surface regions have no valid
extraction directions) we segment the largest region, replacing it by

ACM Trans. Graph., Vol. 38, No. 4, Article 1. Publication date: July 2019.

feasible sub-regions and introducing corresponding new “dummy”
attributes. We then rerun the partition on this refined input.

Given an infeasible region, our goal is to segment it into assem-
blable contiguous sub-regions of roughly equal size with compact
in-between boundaries. When assessing sub-region assemblability, it
is straightforward to test if the sub-region’s motion is obstructed by
an existing region; however, explicit assessment of whether one sub-
region obstructs another sub-region before they are fully formed is
not possible. Instead, while forming sub-regions we reduce the like-
lihood of one sub-region blocking another by growing sub-regions
with maximally compact shared boundaries and far away extraction
directions. We start by attempting to segment the input region into
just two such sub-regions, and increase the number of produced
sub-regions if this fails.

6.1 Binary Segmentation

The binary segmentation algorithm aims to split a region S into
two new surface-extractable contiguous sub-regions S, S!. To this
end it starts by locating pairs of potential extraction directions
dp, d1 and uses the pair deemed best in terms of the criteria below to
compute the sub-regions. If the produced regions are not contiguous
it proceeds to the next best pair.

Extraction Directions. Denoting with C; the set of triangles that
are extractable along direction d;, a split is valid only if CoUC; = S
(i.e all triangles in S are extractable along either dy or d;). We rank
the set of all valid direction pairs X using the following cost function
1-do-dy a(l— |ﬂoﬂ,ﬂ1|). ®)
Here A; is the sum of areas of the triangles in C;, and A’ is the
average area difference across all direction pairs in X. The first term
promotes opposite extraction directions, reducing the likelihood
of obstruction between the resulting sub-regions. The second term
balances sub-region sizes, promoting more even output sub-region
sizing. The scalar « balances the two terms, and was set to 0.1 in all
our experiments.

Do =

Region Growth. Given a pair of extraction directions dy, d, we
grow the sub-regions S°, S! starting from a seed triangle and grad-
ually adding triangles that share edges with one of the current
sub-regions to this sub-region based on a priority metric. To deter-
mine seed triangles for the sub-regions S’, we project each triangle
in the source region onto the ray whose origin is the region’s cen-
troid and whose direction is the extraction direction d;. We then
select the triangle from the source region that is furthest along the
ray as the new seed for the subregion. We use the following metric
to prioritize the next triangle to add to one of the sub-regions and
only add triangles to S* if they are extractable along d;:

D(t, dj) " louter(s',{, t)

Y -
D’ linner(S{’ t)
where D(t,d;) is the distance from the triangle ¢ to the ray whose
origin is the centroid of S and whose direction is d;, D’ is the average
distance to this ray for all triangles in the region, and ljpner and

lourer are the overall length of t’s edges that are shared with the
current region S; and those that are not, respectively. The first term

©)

Surface2Volume: Surface Segmentation Conforming Assemblable Volumetric Partition « 1:11

promotes compactness by penalizing triangles that are far away
from their region’s seed; the second term promotes the creation of
shorter boundaries [Julius et al. 2005]. We use y = 0.15.

Boundary Optimization. The segmentation produced by the re-
gion growing algorithm has boundaries that are linked to the tessel-
lation, and are likely to be jagged in areas where the assignment to
both regions have similar costs (Figure 10 (b)). To improve the inter-
face between adjacent pieces we optimize segmentation boundaries
by isolating a strip of triangles that are close to the original one, and
can be extracted along both directions (Figure 10 (c)). We compute
the final boundary within this strip using the level set smoothing
method proposed in [Livesu 2018], splitting edges to embed it into
the connectivity of the mesh (Figure 10 (d)).

(a) (b) (c)

(d)

Fig. 10. Split boundary optimization: (a) input model; (b) region with raw
cut; (c) re-assignable triangles; (d) final smooth cut.

We explicitly test that neither sub-region blocks the assembla-
bility of the other along the chosen directions. If the test fails, we
proceed to regrow regions using the next best direction pair. We
limit the testing to 10 pairs, and use a multi-region split if all fail.

6.2 Segmenting into Multiple Sub-Regions.

If the binary split fails to produce two assemblable sub-regions,
rather than splitting those recursively we repeat the same partition
process but with n directions and sub-regions, first using n = 3
and increasing it until the produced sub-regions are extractable.
We select n directions that minimize }’;; D;; (Equation 8) and then
proceed to seed and grow charts as before.

7 MULTI-REGION PARTS

Users often want disjoint regions to have the same attribute value -
for instance, they may want to use the same color for all the legs of
a caterpillar (Figure 13). Since they often seek to reduce part count,
users may wish to keep these same-attribute regions together as
outer surfaces of a common volumetric part. Our framework sup-
ports formation of such common parts by minimally changing the
partition algorithm in the presence of such disjoint same-attribute
regions. We leave it to the user to indicate which same attribute
regions should be joined into such multi-region parts.

Given a set of regions users wish to keep together (Figure 11(b)),
we change the initial mesh element labeling (Section 4.2) to form
a single connected component for each such compound region as
follows. We first label the tetrahedra adjacent to the surface using
the same process as before. We then compute the dual graph O of
the tetrahedralization, where nodes correspond to tetrahedra (and
inherit their attributes, if any) and where arcs correspond to pairs
of tetrahedra sharing common facets. Each node is placed at the

barycenter of the corresponding tetrahedron. Each region S; corre-
sponds to a connected subgraph in D where all the nodes inherit
the region’s attribute value. We mark nodes that do not correspond
to any region as unaffiliated. For each attribute A; of interest we
compute a minimum spanning tree over O connecting all its regions
along paths containing only unaffiliated nodes. In computing the
tree we seek paths which are both short and which lie away from
other surface regions (so as to minimally block subsequent growth
of other parts).

For each region S; we compute a center point p; which is geodesi-
cally farthest from the region’s boundaries, then mark all tetrahedra
which are at most half the distance from p; to the boundary as
potential tree nodes. For each attribute A; we compute a minimum
spanning tree over O connecting potential tree nodes, one for each
region, along paths containing only unaffiliated nodes. We set the
weight of each arc a connecting the nodes nq and nj to be its length
times the inverse of its distance from the surface of O:

d(m,) w0
d(ny,S) +d(nz, S)

where S is the boundary of O, and d(., .) is the Euclidean distance.
This weighting moves paths inward and allows adjacent parts more
freedom to grow. We then associate all the tetrahedra (nodes) in
the computed tree with the attribute A; (Figure 11(c)). We process
attributes in descending order of the number of regions they are
affiliated with; for attributes with the same region count we process
the ones with smaller corresponding region area first. The latter
preference decreases the likelihood of forming tiny parts.

The rest of the partitioning algorithm is performed as described
in Section 3.2and 4 with the following minor difference in region
extractability assessment (Section 4.1). For all regions we test for
ray intersections not only against the other attribute regions, but
also against the surface of the tetrahedra paths connecting these
regions. For multi-region parts, we apply the test to both region and
path vertices (vertices of tetrahedra traversed by the path).

w(a) = |al -

8 RESULTS AND VALIDATION

Throughout the paper we demonstrate Surface2Volume’s perfor-
mance on twenty-one diverse inputs. Input segmentations came
from pre-existing colorized inputs, existing meshes colorized using
a simple user interface, and challenging 3D models created by an
artist based on images of real puzzles. In our tests we focused on
the types of free-form objects users are likely to fabricate, including
furniture (tables, chairs, bench, and the nightstand in Figure 15),
natural shapes (caterpillar, frog, ghost, Figure 13), decorative objects
(vase puzzle, apple), and engineered shapes (screwdriver, gear, Fig-
ure 12). We tested both relatively smooth inputs (soccer and swirl
balls) and ones with multiple fine details (lion statuette), and both
genus zero and high-genus shapes (puzzle, Figure 9). Due to the
effort required to print and assemble multi-part shapes, we antici-
pate that users would like to keep the number of different surface
attributes specified to under a dozen, motivating us to focus our
tests on such examples.

Our set of inputs validates all the core elements of our method:
as-assemblable-as-possible partitioning, sequential part extraction,
region splitting, and multi-region attribute processing. For many

ACM Trans. Graph., Vol. 38, No. 4, Article 1. Publication date: July 2019.

1:12 « Aradgjo, C. et al

@(‘ (e)

Fig. 11. Multi region part processing: (a) input surface; (b) two regions having the same green attribute; (c) tetrahedra affiliated with the green attribute after

MST calculation; (d) single part formed out of the two merged green regions; (e) whole object decomposition; (f) printed parts and assembled object.

r

3

SCREWDRIVER

MARGARITA
GLASS

Fig. 12. A gallery of both digital and fabricated results obtained with our method.

of our inputs (for instance, the soccer ball, the swirl-ball, and the
milk jug) we were able to compute parts that allow for any assembly
order, and are extractable within a single disassembly pass. Others
require a multi-stage assembly process, such as the Duffy table and
puzzle vase (Figure 4). Our method robustly handles both scenarios,
computing parts over multiple disassembly iterations for the latter
scenario. It also seamlessly handles cases where segmentation con-
forming partitioning requires sequential part extraction, such as the
puzzle in Figure 9. For the dragon and pig, the input set of regions
does not allow for region-split-free partitioning. For others such
as the lion, caterpillar, frog, and ghost, the preference for keeping
regions with similar attribute values together similarly necessitated
segmentation refinement. In all these cases our method automat-
ically computed region segmentations and subsequent partitions
that allow for subsequent part assembly.

Output Fabrication. Across the paper we exhibit a variety of 3D
printed results of different complexity. In all cases we were able to

ACM Trans. Graph., Vol. 38, No. 4, Article 1. Publication date: July 2019.

assemble the fabricated parts to form the target object. To account
for the inherent inaccuracy of 3D printing, we offsetted thicker parts
inward along the normal direction by a small epsilon reflective of the
printer tolerance. Several of these examples include the use of semi-
transparent materials (wavy cylinder, milk-jug, frog) - these looks
cannot be achieved by external surface painting or computational
hydrographics.

Comparison to Prior Art. As discussed in Section 2, while assembla-
bility is a critical requirement when partitioning models for fabrica-
tion, there is little prior work on surface segmentation conforming
assemblable partitioning. Basic methods that offset the segment
boundaries either along a fixed direction or along the inverse of
the surface normal fail on even medium complexity inputs, such as
the apple or the wavy cylinder. At our request, Yao et al. [2017] at-
tempted to partition the milk-jug, the soccer ball, the swirl-ball, and
the wavy cylinder. The method failed to generate parts for the first
two, generated an invalid result for the swirl-ball (Figure 3), and was

Surface2Volume: Surface Segmentation Conforming Assemblable Volumetric Partition + 1:13

‘ CATERPILLAR
\ ~
e -

e}

Fig. 13. Example inputs that require surface segmentation refinement to enable partition and our outputs. The body and the tongue of the pig model are not
region extractable; after splitting the body, all parts become extractable. The frog, caterpillar and ghost have small features (tooth, eyeballs and pupils for the
frog, antennae and legs for caterpillar, and mouth and eyes for the ghost) that we seek to keep together when possible. These choices can only be satisfied by

refining the surrounding regions.

e
@

Fig. 14. Stress tests. Left: our method can robustly handle surfaces with
approximately a hundred different materials, such as this sphere. Right: our

method robustly handles surfaces with multiple disjoint regions composed
of the same material, such as this soccer ball.

able to partition the wavy cylinder (Figure 2) after remeshing it. Our
method successfully processed these inputs algorithmically. This
comparison highlights the main advantage of our

A method, namely its ability to process free-form in-
puts that require computation of interfaces with com-
plex, irregular interface topology and geometry. We

, tested our method on the furniture models provided
4 by Yao et al., and our method was able to correctly
)
=

partition most of these inputs (Figure 15). We dis-
cuss the failure cases in Section 9. One of the most
intriguing aspects of our results was that the extrac-
tion directions for a few parts found by our method

were not the axis-aligned ones that a human observer would predict
(see inset). Specifically for the bench, Surface2Volume extracts the
side part downwards and to the left, and extracts the table’s side
along a forward-left diagonal. Both computation and fabrication
confirmed that these directions indeed enable assemblable partition-
ing.

Parameters. Unless explicitly stated otherwise, all of the examples
shown in the paper were generated with a single set of parameters,
set as described in Sections 3 through 7. We performed a sensitivity
analysis in which we ran Surface2Volume on a series of challenging
models (apple, dragon, gearleaver, and the teaser model), doubling
and having each of the parameters w, wp, a, ¢, and y respectively.
In all cases, Surface2Volume successfully produced an extractable
partitioning of every input with the same part count as before.

Multi-Region Parts. Choosing which same-
attribute regions should or should not bound com-
mon parts is inherently dependent on the user
desired part-size balance. By default we merge all
regions with the same attribute value into a single
part, but leave it up to the user to state otherwise.
The inset shows an alternative partitioning of the
model in Figure 11 where this possibility was ex-
ploited.

Part Extension. The size of the parts we compute is controlled by
the weight w (Equation 7). For all inputs we can obtain extractable
parts using the default setting of this weight. We enable users to con-
trol the size of individual parts by modifying this weight, enabling
them to avoid forming parts that are too thin to be manufacturable

ACM Trans. Graph., Vol. 38, No. 4, Article 1. Publication date: July 2019.

1:14 « Aradgjo, C. et al

TREE TABLE

DUFFY
TABLE

LEAF TABLE

NIGHTSTAND | BRANCA CHAIR

Fig. 15. Partitions of furniture models from Yao et al. [Yao et al. 2017]. Our
method found non-obvious directions (validated computationally and via
printing) for a few parts, such as the right side of the bench and the side
strips on the Duffy table.

for a given overall object size and material. This also enables ac-
counting for material cost, by reducing the size of parts requiring
expensive materials. We demonstrate this option on the tree and
leaf tables (Figure 15) decreasing by a factor of 5 for the parts
associated with the narrow branch regions. Using the default values
on these inputs produces valid partitions but ones with parts which
are too shallow for practical purposes.

Robustness. In order to test the stability of our method on chal-
lenging inputs, we partitioned a sphere with 100 different surface
colors, and a soccer ball with 12 spots where we required all spots
to belong to the same part. Our method successfully produces ex-
tractable partitions for both of these inputs (Fig. 14).

Runtimes and Statistics. The input models we tested have between
~20,000 and ~100,000 surface triangles, with the initial tetrahedral-
izations ranging in size from ~200,000 to ~4,000,000 elements. In all
cases our method automatically computed an assemblable partition
within 10 minutes, with the exception of the models from Yao et al.
[2017], which took up to 2 hours due to requiring a higher resolu-
tion tetrahedral mesh to capture the fine detail. We note that Yao
et al. report runtimes of 24 hours for the bench model, which we
complete in under 2 minutes. Experiments were run on an AMD
Threadripper 1950X CPU, with 16GB RAM, running Windows 10.

Assembly Stability. In our work we focus on assemblable part
computation and generate parts that fit snugly together. In many
cases the friction between the parts is sufficient to hold them to-
gether, while in others parts may require the use of glue to be held
together. An appealing alternative, which could be investigated in

ACM Trans. Graph., Vol. 38, No. 4, Article 1. Publication date: July 2019.

the future is to add connectors to the processed parts while preserv-
ing assemblability, following on ideas presented by [Koyama et al.
2015]. Alternatively, given our parts, one can constrain part motion
via a post-process that computes an extraction order and extrudes
joints from each part along its extraction direction into adjacent
parts that come later in this order.

9 CONCLUSIONS.

We have presented Surface2Volume, a new method for computing
assemblable segmentation-conforming partitions of 3D models. Our
method outperforms prior approaches in terms of of the range of in-
puts it can handle, its robustness, and its efficiency. This method has
immediate applications for digital fabrication, and can significantly
simplify the fabrication of high quality multi-material, multi-color
objects. At the core of our method is a combined discrete-continuous
optimization process that uses a discrete mesh labeling approach to
efficiently obtain an approximate solution for the problem at hand,
and a geometric optimization process that converts this discrete
solution into our desired final partition.

Limitations. Surface2Volume operates on discrete tetrahedral in-
puts and is inherently limited by both the size and quality of input
surface and volume mesh elements. In particular, our method is
inherently constrained by the resolution of the volumetric mesh
we use to discretize the input model. Accordingly, Surface2Volume
can only approximate extrusion surfaces to the accuracy allowed
by the mesh resolution. It successfully partitions inputs such as the
puzzle in Figure 9 where the extruded parts are large compared
to the overall model size. However, models such as the bookshelf
and the archchair in [Yao et al. 2017] require ex-
trusion of curved segmentation boundaries with
edges whose length is below 0.5% of the model’s
bounding box (a tet mesh at this resolution would
have over 100 million elements). We consequently
fail to produce valid results on such inputs. Addi-
tionally, mesh quality along newly exposed inter-
faces (Section 5) is not optimized after part extrac-
tion; accordingly, our method may become less
robust on models that require multiple partition
iterations. This could be solved, in practice, by
remeshing the newly exposed interfaces at each
update step. Our current implementation also as-
sumes that, after a subset of parts is extracted, the newly exposed
interface can be associated with one of the adjacent regions (Sec-
tion 5). This assumption simplifies our implementation, and holds
for the vast majority of inputs we tested. It does not hold for patho-
logical models such as the wooden puzzle (inset). As the fish-eye
view in the inset (bottom) shows, after removing the puzzle’s lock
bar part, the exposed interface has regions associated with the other
puzzle bars. The model cannot be partitioned unless this exact region
attribute pattern is reproduced; this pattern cannot be reproduced
by our system. We expect such pathological cases to be rare.

Finally, a number of choices in our region extractability computa-
tion (limiting intersection testing to vertices, fixing the number of
sampled extraction directions) are guided by our desire to achieve
an acceptable performance versus robustness tradeoff. We have

Surface2Volume: Surface Segmentation Conforming Assemblable Volumetric Partition + 1:15

never seen failures emanating from either choice, but they are the-
oretically possible. Increasing the number of directions sampled
or using robust predicates for intersection tests would make the
method more fail-proof, but will likely significantly slow it down.
Robustness is also limited by the precision allowable in the interior
tetrahedral discretization, as is the case for all discrete frameworks.

ACKNOWLEDGMENTS

The authors wish to thank the reviewers for their insightful sugges-
tions. We are also deeply grateful to: Enrique Rosales and Luciano
S. Burla, for help with model creation; Jinfan Yang, Linda Lin Lu,
Riccardo Scateni, Gianmarco Cherchi, Stefano Nuvoli and Alessan-
dro Tola, for help with 3D printing and milling; Shayan Hoshyari,
for help with images creation; Chenxi Liu, for valuable discussions;
Michela Spagnuolo, for early discussions on this project; the au-
thors of [Yao et al. 2017], for running their algorithm on our input
data. The UBC authors were supported by NSERC. The CNR IMATI
authors were supported by the EU Horizon 2020 program, under
grant agreement No.680448 (CAxMan). Vase-lion model is provided
courtesy of SENSABLE by the AIM@SHAPE-VISIONAIR Shape
Repository.

REFERENCES

Maneesh Agrawala, Doantam Phan, Julie Heiser, John Haymaker, Jeff Klingner, Pat
Hanrahan, and Barbara Tversky. 2003. Designing effective step-by-step assembly
instructions. ACM Trans. Graphics 22, 3 (2003), 828-837.

Thomas Alderighi, Luigi Malomo, Daniela Giorgi, Nico Pietroni, Bernd Bickel, and
Paolo Cignoni. 2018. Metamolds: Computational Design of Silicone Molds. ACM
Trans. Graph. 37, 4 (2018), 136:1-136:13.

Marco Attene. 2015. Shapes in a box: Disassembling 3D objects for efficient packing
and fabrication. Computer Graphics Forum 34, 8 (2015), 64-76.

Amit Bermano, Amir Vaxman, and Craig Gotsman. 2011. Online Reconstruction of 3D
Objects from Arbitrary Cross-sections. ACM Trans. Graph. 30,5 (2011), 113:1-113:11.

Yuri Boykov and Vladimir Kolmogorov. 2004. An experimental comparison of min-
cut/max-flow algorithms for energy minimization in vision. IEEE Trans. Pattern
Analysis and Machine Intelligence 26, 9 (2004), 1124-1137.

Yuri Boykov, Olga Veksler, and Ramin Zabih. 2001. Fast approximate energy minimiza-
tion via graph cuts. IEEE. Trans. Pattern Analysis and Machine Intelligence 23, 11
(2001), 1222-1239.

Xuelin Chen, Hao Zhang, Jinjie Lin, Ruizhen Hu, Lin Lu, Qi-Xing Huang, Bedrich Benes,
Daniel Cohen-Or, and Baoquan Chen. 2015. Dapper: Decompose-and-Pack for 3D
printing. ACM Trans. Graphics 34, 6 (2015).

Chi-Wing Fu, Peng Song, Xiaoqi Yan, Lee Wei Yang, Pradeep Kumar Jayaraman, and
Daniel Cohen-Or. 2015. Computational interlocking furniture assembly. ACM Trans.
Graphics 34, 4 (2015), 91.

Thomas Funkhouser, Michael Kazhdan, Philip Shilane, Patrick Min, William Kiefer,
Ayellet Tal, Szymon Rusinkiewicz, and David Dobkin. 2004. Modeling by Example.
In Proc SIGGRAPH. 652-663.

A. Guéziec, G. Taubin, F. Lazarus, and B. Horn. 2001. Cutting and stitching: Converting
sets of polygons to manifold surfaces. IEEE TVCG 7, 2 (2001), 136-151.

LLC Gurobi Optimization. 2018. Gurobi Optimizer Reference Manual. (2018). http:
//www.gurobi.com

Jingbin Hao, Liang Fang, and Robert E Williams. 2011. An efficient curvature-based
partitioning of large-scale STL models. Rapid Prototyping Journal 17, 2 (2011),
116-127.

Jean Hergel and Sylvain Lefebvre. 2014. Clean color: Improving multi-filament 3D
prints. Computer Graphics Forum 33, 2 (2014), 469-478.

Philipp Herholz, Wojciech Matusik, and Marc Alexa. 2015. Approximating Free-form
Geometry with Height Fields for Manufacturing. Computer Graphics Forum 34, 2
(2015), 239-251.

Kristian Hildebrand, Bernd Bickel, and Marc Alexa. 2013. Orthogonal slicing for additive
manufacturing. Computers & Graphics 37, 6 (2013), 669-675.

Tan-Chi Ho, Jung-Hong Chuang, et al. 2012. Volume Based Mesh Segmentation. Journal
of Information Science and Engineering 28, 4 (2012), 705-722.

Ruizhen Hu, Honghua Li, Hao Zhang, and Daniel Cohen-Or. 2014. Approximate
pyramidal shape decomposition. ACM Trans. Graphics 33, 6 (2014), 213-1.

Leo Joskowicz and Elisha Sacks. 1999. Computer-Aided Mechanical Design Using
Configuration Spaces. Computing in Science & Engineering 1, 6 (1999), 14-21.

Leo Joskowicz and Elisha P Sacks. 1991. Computational kinematics. Artificial Intelligence
51, 1-3 (1991), 381-416.

Dan Julius, Vladislav Kraevoy, and Alla Sheffer. 2005. D-Charts: Quasi-Developable
Mesh Segmentation. Computer Graphics Forum 24, 3 (2005).

Yuki Koyama, Shinjiro Sueda, Emma Steinhardt, Takeo Igarashi, Ariel Shamir, and
Wojciech Matusik. 2015. AutoConnect: Computational Design of 3D-Printable
Connectors. ACM Trans. Graph. 34, 6 (2015), Article No. 231.

Roee Lazar, Nadav Dym, Yam Kushinsky, Zhiyang Huang, Tao Ju, and Yaron Lipman.
2018. Robust Optimization for Topological Surface Reconstruction. ACM Trans.
Graph. 37, 4 (2018), 46:1-46:10.

L. Liu, C. Bajaj, J. O. Deasy, D. A. Low, and T. Ju. 2008. Surface Reconstruction From
Non-parallel Curve Networks. Computer Graphics Forum 27, 2 (2008), 155-163.
Marco Livesu. 2018. A Heat Flow Relaxation Scheme for n Dimensional Discrete Hyper

Surfaces. Computers & Graphics 71 (2018), 124 - 131.

Marco Livesu, Stefano Ellero, Jonas Martinez, Lefebvre Sylvain, and Marco Attene. 2017.
From 3D models to 3D prints: an overview of the processing pipeline. Computer
Graphics Forum 36, 2 (2017), 537-564.

Kui-Yip Lo, Chi-Wing Fu, and Hongwei Li. 2009. 3D Polyomino Puzzle. ACM Trans.
Graphics 28, 5 (2009).

Linjie Luo, Ilya Baran, Szymon Rusinkiewicz, and Wojciech Matusik. 2012. Chopper:
Partitioning Models into 3D-Printable Parts. ACM Trans. Graphics 31, 6 (2012).
Asla Medeiros e Sa, Karina Rodriguez Echavarria, Nico Pietroni, and Paolo Cignoni.
2016. State Of The Art on Functional Fabrication. In Eurographics Workshop on

Graphics for Digital Fabrication (2016).

Alessandro Muntoni, Marco Livesu, Riccardo Scateni, Alla Sheffer, and Daniele Panozzo.
2018. Axis-Aligned Height-Field Block Decomposition of 3D Shapes. ACM Trans.
Graphics 37, 5 (2018).

Kazutaka Nakashima, Thomas Auzinger, Emmanuel Iarussi, Ran Zhang, Takeo Igarashi,
and Bernd Bickel. 2018. CoreCavity: Interactive Shell Decomposition for Fabrication
with Two-piece Rigid Molds. ACM Trans. Graph. 37, 4 (2018), 135:1-135:13.

J. Nocedal and S. Wright. 2000. Numerical Optimization. Springer New York.

Daniele Panozzo, Olga Diamanti, Sylvain Paris, Marco Tarini, Evgeni Sorkine, and Olga
Sorkine-Hornung. 2015. Texture Mapping Real-World Objects with Hydrographics.
Computer Graphics Forum 34, 5 (2015), 65-75.

Tim Reiner, Nathan Carr, Radomir Méch, Ondfej St’ava, Carsten Dachsbacher, and
Gavin Miller. 2014. Dual-color mixing for fused deposition modeling printers.
Computer Graphics Forum 33, 2 (2014), 479-486.

Christian Schiiller, Daniele Panozzo, Anselm Grundhéfer, Henning Zimmer, Evgeni
Sorkine, and Olga Sorkine-Hornung. 2016. Computational thermoforming. ACM
Trans. Graphics 35, 4 (2016), 43.

Ariel Shamir. 2008. A survey on mesh segmentation techniques. Computer Graphics
Forum 27, 6 (2008), 1539-1556.

Nick Sharp and Keenan Crane. 2018. Variational Surface Cutting. ACM Trans, Graphics
37, 4 (2018).

Hang Si. 2015. TetGen, a Delaunay-Based Quality Tetrahedral Mesh Generator. ACM
Trans. Math. Softw. 41, 2, Article 11 (2015), 36 pages.

Pitchaya Sitthi-Amorn, Javier E. Ramos, Yuwang Wangy, Joyce Kwan, Justin Lan,
Wenshou Wang, and Wojciech Matusik. 2015. MultiFab: a machine vision assisted
platform for multi-material 3D printing. ACM Trans. Graphics 34 (2015). Issue 4.

Peng Song, Bailin Deng, Ziqi Wang, Zhichao Dong, Wei Li, Chi-Wing Fu, and Ligang Liu.
2016. CofiFab: coarse-to-fine fabrication of large 3D objects. ACM Trans. Graphics
35, 4 (2016), 45.

Peng Song, Chi-Wing Fu, and Daniel Cohen-Or. 2012. Recursive interlocking puzzles.
ACM Trans. Graphics 31, 6 (2012), 128.

Peng Song, Zhonggi Fu, Ligang Liu, and Chi-Wing Fu. 2015. Printing 3D objects with
interlocking parts. Computer Aided Geometric Design 35 (2015), 137-148.

Olga Sorkine and Marc Alexa. 2007. As-Rigid-As-Possible Surface Modeling. In Proc.
Symp. Geometry Processing. 109-116.

Birgit Strodthoff and Bert Jittler. 2017. Automatic decomposition of 3D solids into
contractible pieces using Reeb graphs. Computer-Aided Design 90 (2017), 157-167.

Robert W Sumner and Jovan Popovi¢. 2004. Deformation Transfer for Triangle Meshes.
In ACM Trans. Graphics, Vol. 23. ACM, 399-405.

Juraj Vanek, JA Galicia, Bedrich Benes, R Mech, N Carr, Ondrej Stava, and GS Miller.
2014. PackMerger: A 3D print volume optimizer. Computer Graphics Forum 33, 6
(2014).

Weiming M Wang, Cédric Zanni, and Leif Kobbelt. 2016. Improved surface quality in
3d printing by optimizing the printing direction. Computer Graphics Forum 35, 2
(2016), 59-70.

Ziqi Wang, Peng Song, and Mark Pauly. 2018. DESIA: A General Framework for
Designing Interlocking Assemblies. ACM Trans. Graph. 37, 6 (2018), 191:1-191:14.

Jan D Wolter. 1991. On the automatic generation of assembly plans. In Computer-Aided
Mechanical Assembly Planning. Springer, 263-288.

Shiging Xin, Chi-Fu Lai, Chi-Wing Fu, Tien-Tsin Wong, Ying He, and Daniel Cohen-Or.
2011. Making burr puzzles from 3D models. ACM Trans. Graphics 30, 4 (2011), 97.

Jiaxian Yao, Danny M Kaufman, Yotam Gingold, and Maneesh Agrawala. 2017. Interac-
tive Design and Stability Analysis of Decorative Joinery for Furniture. ACM Trans.

ACM Trans. Graph., Vol. 38, No. 4, Article 1. Publication date: July 2019.

http://www.gurobi.com
http://www.gurobi.com

1:16 + Araujo, C. et al

Graphics 36, 2 (2017), 20.

Miaojun Yao, Zhili Chen, Linjie Luo, Rui Wang, and Huamin Wang. 2015. Level-set-
based Partitioning and Packing Optimization of a Printable Model. ACM Trans.
Graphics 34, 6 (2015).

Yinan Zhang, Emily Whiting, and Devin Balkcom. 2016. Assembling and disassembling
planar structures with divisible and atomic components. Algorithmic Foundations of
Robotics (WAFR) PP, 99 (2016).

Yizhong Zhang, Chunji Yin, Changxi Zheng, and Kun Zhou. 2015. Computational
Hydrographic Printing. ACM Trans. Graphics 34, 4 (2015).

Appendix A PART EXTRACTABILITY

Without loss of generality, we assume that all the parts O; with
J < ihave already been extracted.

Proposition A.1. A part O; is extractable along a direction d; if it
is both interface extractable and region extractable.

Proof: Any point p € O; must be in one of the following condi-
tions: (1) on the surface of O but not on the interface with other
parts; (2) on the interface with other parts; (3) neither of the previous
two (i.e. internal). Considering a ray shot from p along d;, we have
the following cases:
if (1), the ray cannot intersect the boundary of any O; with j > i
because O; is region extractable. Hence in order to intersect a part O;
with j > i, the ray must necessarily exit O; to enter O; at a common
interface point which is not on the boundary of O. However, since
the ray exits Oj;, this would require that this common point on the
boundary of O; has a normal which is coherently oriented with d;,
which is excluded because we assume interface extractability. Hence,
no ray originated on a boundary point can intersect a part O; with
J>i
if (2), the ray necessarily enters O; because we assume interface ex-
tractability. This means that, before possibly intersecting any other
Oj with j > i, it must exit O; from a point on the boundary of O,
and this leads us back to the previous case;
if (3), before possibly intersecting any other O; with j > i, the ray
must exit O;, reducing to one of the previous two cases.

Thus, any possible ray reduces to case (1); this in turn implies
that no ray from O; along d; intersects other parts O; with j > i. O

ACM Trans. Graph., Vol. 38, No. 4, Article 1. Publication date: July 2019.

	Abstract
	1 Introduction
	2 Background and Related Work
	3 Problem Statement and Overview
	3.1 Problem Statement
	3.2 Algorithm Overview

	4 As-Assemblable-As-Possible Partitioning
	4.1 Direction Initialization.
	4.2 Discrete Partitioning.
	4.3 Interface Optimization

	5 Model Update
	6 Segmentation Refinement
	6.1 Binary Segmentation
	6.2 Segmenting into Multiple Sub-Regions.

	7 Multi-Region Parts
	8 Results and Validation
	9 Conclusions.
	Acknowledgments
	References
	A Part Extractability

