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Abstract

This paper introduces the concept of weighted topology to model a 3D object whose connectivity and metric depend
on a novel notion of weighted arc-length. The weighted arc-length between any two points of the shape takes into
account the fact that a part of the object may be either weakly or strongly connected to another part. The new model
is useful to treat problems which are intrinsically not robust to small topological changes. We describe an example
implementation of the model and show how it can be exploited to (1) extend the applicability domain of existing
segmentation algorithms, and (2) improve the performances of a shape descriptor in a 3D object retrieval scenario.

Categories and Subject Descriptors (according to ACM CCS): I.3.3 [Computer Graphics]: Computational Geometry
and Object Modeling— Additional keywords: Shape modeling, robustness, shape description.

1. Introduction

Thanks to recent technological advances on sensors
and scanners, current 3D datasets are becoming larger
and larger. As a consequence, precise 3D models are
now made of millions of elements, and understanding
the structure of such shapes in order to take decisions
requires an abstraction process. On the other hand, each
3D digitization technique has some physical limitations
(precision, resolution, occlusions, reflections, ...) that in
some applications can lead to poor performances of the
model (noise, surface holes, ...). Consequently, there is
a need to abstract complex data coupled with the ne-
cessity of making a model robust to data imprecisions.
In this sense, removing the unessential and keeping the
relevant is the core of any good model representation.

Standard models used to represent solid objects are
strongly based on how points are connected to each
other. The connectivity graph of a triangle mesh, for
instance, is an explicit model of the topology of the sur-
face being represented. For some applications it has
been shown that the connectivity alone can even pro-
vide a rather precise description of a shape [24]; un-
fortunately, they are not enough to face relatively small
variations of the geometry that induce abrupt changes
in topology. As an example, some shape descriptors are
particularly sensitive to such small changes [31, 22],
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and several geometry processing and analysis algo-
rithms are severely limited by the constraints imposed
by a hard use of the encoded topology [5, 23]. There-
fore, it would be desirable to have the possibility to ro-
bustly work with solid models without being spoiled by
such small variations.

Figure 1: Schematic difference between standard topology (top row,
abrupt change of connectivity) and weighted topology (bottom row,
smooth transition from strong to weak connectivity).

The objective of this work is to propose a new per-
spective to study the connectedness of shapes, so that
the aforementioned abrupt topological changes become
smooth transitions. The approach chosen to reach this
goal, which is the main contribution of this paper, is the
definition of a model for solid objects where the arc-
length between any two points is weighted to take into
account that a part of the object may be either weakly
or strongly connected to another part. Roughly speak-
ing, let us imagine to have two balls in the Euclidean
space and to define a solid as their union (see Figure 1).
Using standard Euclidean topology, the solid is either
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connected or disconnected, depending on the relative
position and size of the two spheres. Conversely, using
weighted topology the solid may be either connected,
disconnected, or weakly connected. More precisely, the
connectedness between any pair of points of the solid is
a number in the range [0,1], where the extremes 0 and
1 indicate that the two points are disconnected or con-
nected respectively.

In the remainder we show how weighted topology is
related to fuzzy connectedness [45], and how it can be
used to effectively characterize the space occupied by
blurred solids. In turn, a blurred solid can be used as an
approximated model to describe an object along with a
set of possible small modifications of its shape that may
also induce changes in topology. Finally, we show that
our new model can be effectively employed to improve
the performances of state-of-the-art shape descriptors
and shape segmentation algorithms.

2. Previous work

Traditional geometric modeling techniques [33, 34]
are based on a discrete representation of a geometric
model which can be possibly continuous and smooth.
Several models are the result of a reconstruction from
a sufficiently dense point cloud [28, 1, 3, 15]. Most
of these algorithms are based on the study of the shape
of Voronoi cells for points sampled on smooth surfaces.
For instance, it has been shown that surfaces smoothly
embedded in R3 can be reconstructed homeomorphi-
cally from any 0.06-sampling using the Cocone algo-
rithm [2]. For smooth submanifolds in higher dimen-
sional spaces, similar ideas lead to provable local di-
mension estimation algorithms [14]. It has also been
shown that appropriate offsets, or equivalently α-shapes
[17], provide reconstructions with the correct homotopy
type [37] under opportunely defined sampling condi-
tions. Moreover, it has been shown that persistent ho-
mology can be used to reliably estimate Betti numbers
of a wide class of compact sets (for instance it can deal
also with sharp edges) under an even weaker sampling
condition that depend on the weak feature size of the
underlying manifold [11, 13, 9]. Finally, persistent ho-
mology has been shown to be able to code the connected
components of the sublevel sets of an image also when
it is partially occluded or noisily sampled [19].

Nevertheless, the definition of automatic and
topology-aware methods able to reconstruct a complete
watertight model from arbitrarily, poorly-sampled data
scans is still a challenging task. For instance, the ap-
proach proposed in [42] requires some user input to
disambiguate in the areas where the topology of the

model cannot be automatically inferred with a good de-
gree of confidence. Other methods propose a-posteriori
corrections of the reconstructed topology that include
skeleton-based editing [26] or topology simplification
based on Reeb graphs [46].

Recently, geometry inference has been proposed as
a tool to handle nonsmooth sampled objects embedded
in arbitrary dimensional spaces, even in case of noise
and outliers [10]. These results lead to the design of
robust approximate unsigned distance functions: [35]
has experimentally shown that starting from a noisily-
sampled object it is possible to generate sequences of
thicker bands able to capture the correct shape topology.

Despite all the efforts spent so far to deal with un-
certain topology in Computer Graphics (e.g. manage-
ment of outliers in reconstruction [35], imprecise an-
notation of sub shapes [25], weak topology characteri-
zation [42]), existing techniques are mainly based on a
post-processing to fix the model [46] to make it suitable
for downstream applications. On the contrary, we aim
at defining a model which explicitly embeds the vari-
ability of its geometry and topology, so that each spe-
cific downstream application can reason on more com-
prehensive shape information. Therefore, our approach
differs from methods that define either a surface met-
ric, for instance based on geodesic and volume visibility
such as [30], or spin images [21], because we are going
to define a global representation that involves both the
shape and its neighbour in the embedding space: in this
sense we could configure our representation as a fuzzy-
fication technique.

Some attempts to embed uncertainty in the model
representation have been done in Computer Vision. Be-
sides the notion of fuzzy set and topographic connec-
tivity [39, 40] the notions of relative and iterative rela-
tive fuzzy connectedness [45] and more recently fuzzy
connectivity measures [36] have been proposed. These
works introduce the concept of degree of connectedness
that depends on the membership of points on paths be-
tween pairs of points of the image. The connectivity
measure introduced in [36] allows the definition of con-
nected components of an image even if two objects par-
tially overlap and has been used to build a tree-based
object description. These methods have been mainly
adopted to analyze 2D and 3D images (e.g. brain, tu-
mors and vessels segmentations). It is worth noticing
that in Computer Vision there have been some attempts
to perform shape analysis directly on the grey-level im-
age or on its corresponding fuzzy-segmented image in-
stead of using a mere crisp segmentation (eg. [8] for
star-shaped images). In particular, in [8] it is stated
that two different discretizations of the same continuous
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fuzzy descriptor generate significantly different shape
descriptions: in our approach, besides the definition of
shape descriptions that are available for a more general
class of objects, we will overcome this kind of limita-
tion by considering only exact Euclidean distances.

3. Topology-robust 3D object representation

After reviewing the basic concepts of arc-wise con-
nectedness of topological spaces (Sec. 3.1), we in-
troduce the notions of blurred solid (Sec. 3.2) and
weighted connectivity (Sec. 3.3) that generalize the no-
tions in Sec. 3.1 to obtain a model representation that
robustly handles both geometric and topological noise
and outliers. Its properties are discussed in Sec. 3.4.

3.1. Basic concepts
Let X be a topological space. A path, or arc, from

a point a to a point b in X is a continuous function γ :
[0,1]→ X such that γ(0) = a and γ(1) = b. A path-
component of X is an equivalence class of X under the
equivalence relation v defined by a v b if there exists a
path from a to b. X is said to be path-connected if and
only if for each pair of points (a,b) in X there exists a
path γ such that γ(0) = a and γ(1) = b, that is, if there
exists only one path-component of X . A path-connected
space X is also connected, meaning that X is not the
union of two disjoint nonempty open sets.

When (X ,d) is a metric space equipped with a dis-
tance d, the arc-length of the path γ is defined as:

L(γ) = sup
0=α0<α1<...<αn=1

n−1

∑
i=0

d(γ(αi),γ(αi+1)), (1)

where the supremum is taken over all possible partitions
of [0,1] and n is unbounded. In case the space X is a
Riemannian manifold a more operative definition of the
arc-length can be obtained integrating:

L(γ) =
∫ 1

0

√
g(γ′(t),γ′(t))dt, (2)

where g is the metric tensor and γ′(t) ∈ Tγ(t)X is the tan-
gent vector of γ at t. Moreover, the arc-length does not
change while changing the parameterization, and there-
fore it is an intrinsic property of the path γ.

3.2. Blurred solids
An r-set is a bounded and regular set [33] and we

loosely call a solid any r-set being a subset of the three-
dimensional Euclidean metric space E3. In this termi-
nology a solid is not necessarily arc-connected.

Let S be a solid, and let ∂S be its boundary. We denote
with du(x,S) the Euclidean distance of a generic point
x of the Euclidean space E3 from the closest point of
∂S. The signed distance function of S is the function
dS : E3→ R such that:

dS(x) =

 du(x,S), if x ∈ S

−du(x,S), otherwise
(3)

We call a blur of radius r of S, r > 0, the function
br

S : E3→ [0,1] defined as follows:

br
S(x) =


dS(x)+r

2r , if − r ≤ dS(x) ≤ r

0, if dS(x) < −r

1, if dS(x) > r

(4)

The union of all the points p ∈E3 for which br
S(p), 0

defines a blurred solid. Thus, for any blur br
S we may

define a corresponding blurred solid that will be denoted
as Br

S =
⋃

p∈E3,br
S(p),0 p.

3.3. Weighted connectivity
The notion of weighted connectivity is the key con-

cept we will use to characterize the relationships among
the points of Br

S (i.e. in a region of the space around the
solid) and it is the basis to define a point neighbor. First,
letA⊂E3 be a convex and compact superset of Br

S (e.g.
A can be the convex hull of Br

S). This space plays the
role of the ambient space of the solid Br

S. Let br
S be the

blur function, for each path γ : [0,1]→A we define its
weight wr(γ) as follows:

wr(γ) =


1∫ 1

0
1

br
S(γ(t)) dt

, if ∀t ∈ [0,1],br
S(γ(t)) , 0

0, otherwise,
(5)

where γ(t), t ∈ [0,1] is a parameterization of γ. Also, we
define the weighted arc-length Y r(γ) of γ as follows:

Y r(γ) =


L(γ)

wr(γ) , if ∀t ∈ [0,1],br
S(γ(t)) , 0

+∞, otherwise,
(6)

Finally, for any pair of points p,q ∈A, we define their
weighted connectivity, Wr

c, as the supremum of the
weights over all the paths γ ∈ Γ, i. e.,

Wr
c = sup

γ∈Γ

wr(γ), (7)
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(a) (b)

Figure 2: In the blurred solid Br
S a path can cross ∂S: in (a) only γ is

inside S, whereas in (b) only γ′′ is inside S.

where Γ represents the set of all paths γ : [0,1]→A such
that γ(0) = p and γ(1) = q.

In Figure 2(a) a path γ is shown for which all the
points are farther than r from the boundary. Therefore,
its weight wr

γ = 1. In contrast, γ′ crosses the original
boundary ∂S, therefore 0 ≤ wr

γ′
≤ 1. In figure 2(b), the

weighted arc-length between p and q varies depend-
ing on the path considered; in this case L(γ) = L(γ′),
nonetheless Y r(γ) ≥ Y r(γ′) because γ crosses a more
blurred area.

Intuitively,Wr
c measures the strenght of the connec-

tion between the points p,q: if there exists at least a path
between p and q which is entirely contained in Br

S, their
weighted connectivity is positive, i.e., 0 <Wr

c ≤ 1. The
points p and q are strongly connected ifWr

c = 1, weakly
connected if 0 <Wr

c < 1, disconnected otherwise.

3.4. Properties
The main properties of the weighted connectivityWr

c
and br

S are discussed emphasizing how they can be used
to deal with complex objects possibly made of multiple
components and having inner cavities.

Relation with dilation operators. The blurred solid Br
S

can be seen as the support of the blur function br
S and,

once r > 0 is fixed, it is a compact space. In particular,
it can be seen as a dilation of radius r of the original
solid S or, better, as the r-offset of S. Anyway, Br

S is not
enough to define the weighted connectivity Wr

c which
is generally defined over an ambient spaceA⊂ E3; this
to include at least the whole interior part of the solid Br

S.

Continuity and boundedness. Once r is fixed, br
S is a

continuous function in E3. Based on the fact that the
signed distance function dS is 1-Lipschitz, also br

S is
a Lipschitz continuous function1. To sketch the proof

1A function f : X →Y is Lipschitz continuous if there exists a real
constant K ≥ 0 such that ∀x,y ∈ X , dY ( f (x), f (y)) ≤ KdX (x,y).

of this fact we consider three cases (the other ones fol-
low by similar reasonings) where d(x,y) denotes the Eu-
clidean distance between x and y:

1. |dS(x)| < r and dS(y) < −r. Then, using the trian-
gular inequality and the hypothesis on dS(y):

|br
S(x)−br

S(y)|= |
dS(x)+ r

2r
−0| ≤

|
dU (x,y)+dS(y)+ r

2r
| ≤ |

dU (x,y)− r + r
2r

|=
d(x,y)
|2r|

;

2. |dS(x)| < r and dS(y) > r. Since |dS(x)| = du(x,S),
and the du(x,S) is the distance from the closest
point of S, the following relations hold:

|br
S(x)−br

S(y)|= |
dS(x)+ r

2r
−1|= |

dS(x)− r
2r

| ≤

|dS(x)|
|2r|

≤
d(x,y)
|2r|

;

3. |dS(x)| < r and |dS(y)| < r. Being the signed dis-
tance function 1-Lipschitz the following relations
hold:

|br
S(x)−br

S(y)|= |
dS(x)+ r− (dS(y)+ r)

2r
|=

|dS(x)−dS(y)|
|2r|

≤
d(x,y)
|2r|

.

In particular the infimum of L(γ)
wr(γ) over Br

S is 0 and
1

wr(γ) plays the role of a multiplier of the arc-length
L(γ). For each γ ∈ Γ, the relation Y r(γ) ≥ L(γ) holds;
the equality Y r(γ) = L(γ) is verified along the paths
that span only the interior part of S and du(x,S) ≥ r,
∀x ∈ Im(γ). Finally, we notice that wr(γ) is bounded
by 0 and 1 and, consequently, 0 ≤Wr

c ≤ 1.

Expressiveness. The weighted arc-length defined in Eq.
(6) incorporates information about the space between
the two points that can be used to (partially) describe
the blurred solid. We will discuss an implementation of
the inner distance concept [29] driven by this notion of
weighted arc-length in Section 4.3.

Relation with fuzzy connectedness. Since 0≤ br
S(x)≤ 1,

∀x ∈ E3, the blur br
S of S defines a fuzzy set on E3 with

membership function µ(x) = br
S(x). Differently from the

discrete notion of fuzzy connectedness defined in [45],
the weighted connectivity introduced in this paper in-
duces a smooth transition between different topologies
as the geometry smoothly changes.
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Applicability. Our model representation can easily deal
with objects having either multiple components or many
cavities. Multi-component objects can be modeled
thanks to the fact that both the blur function br

S and the
weight connectivity do not require S to be a connected
space. The weight wr(γ) stretches the length of L(γ)
permitting the definition of an arc-length between two
points, even if they are disconnected in the traditional
sense. If the object has inner cavities, the radius r can
control their impact on the overall connectivity (i.e. if
r is larger than the cavity, paths may cross it without
the need to turn around), thus acting as the basis of a
multi-level representation.

Noise treatment. Since the notion of Wr
c allows the

definition of a weak-connectivity band in the region
close to ∂S, it is possible to use this model represen-
tation to deal with noisy data, thus making it suitable
for shape reconstruction and description.

Adaptivity. In principle the notions of weighted arc-
length and connectivity can be defined based on non-
constant values of the radius r. This fact would imply a
different value of the blur radius rp for each point p of
∂S, and for each point x ∈E3 the condition −rp ≤ dS(x)≤
rp is evaluated with respect to the value of rp associated
to the closest point p of x on ∂S. Non-constant values
of r over the model can support the representation of
variable entities such as, for example, magnetic fields
or levels of reliability of the data.

4. Examples and preliminary results

Weighted topology is potentially useful in a number
of applications, including shape segmentation, descrip-
tion, and processing. This section outlines our prelimi-
nary experiments and results.

4.1. A possible implementation
Despite the generality of the notions proposed in Sec-

tion 3 that apply to a generic solid object, we show how
the model can be effectively implemented using a ras-
terization of a triangle mesh that generates a 3D image.

After having ensured that the input mesh properly en-
closes a solid [4], we create a binary 3D image B where
each voxel is foreground if it intersects at least one of
the input triangles. By filling the interior voxels starting
from such a skin we produce another binary 3D image S
representing the solid. Then, S is converted to its signed
distance function as described in [41] and, in its turn, the
signed distance funtion is converted to a blurred shape
R by applying Eqn. 4 to each voxel. Throughout the

remainder, we will refer to S, B and R in the aforemen-
tioned meaning.

Fig. 3 depicts the main steps of the conversion pro-
cess. For clarity the figure shows a single section of the
blurred shape. Notice that in each section the blurred
voxels depend on their 3D neighborhood, so we may
observe some shape features which are not visible in
the sharp version of the same section.

Figure 3: From left to right: the bimba mesh (courtesy of
AIM@SHAPE’s Repository); its rasterized version with a cut-plane;
the section of the 3D image; the section of the final blurred shape.

Note that all the steps of this implementation pro-
posal can be performed rather efficiently through state-
of-the-art algorithms. Namely, if an input mesh has de-
fects such as surface holes or self-intersections that pre-
vent it to be the boundary of a solid, the algorithm de-
scribed in [4] can fix it in a few seconds on a standard
PC (3.2 seconds for a chair model made of 100K tri-
angles). Furthermore, the rasterization process can be
accomplished through the algorithm introduced in [16],
which is able to voxelize the Blade model (1.7 million
triangles) within a 2563 grid in 75 milliseconds on the
GPU of a standard PC equipped with an ATI Radeon
9800 Pro graphics card. Finally, to compute the signed
distance field, the algorithm introduced in [41] guaran-
tees a linear-time complexity, which corresponds to ap-
proximately one second for a 2563 grid.

4.2. Shape segmentation
To show how the weighted connectivity can sup-

port existing segmentation algorithms, we have re-
implemented the algorithm described in [5]. In particu-
lar, we have modified the dual graph that represents the
triangle adjacencies, by assigning to each pair of trian-
gles their weighted connectivity (the weight is 1 if the
two triangles are actually adjacent).

First, we compute the weight among any pair of ver-
tices vi and v j as follows: within R, let J be the segment
vi − v j; each voxel traversed by J is multiplied by the
length of its intersection with J. The sum of such mul-
tiplied voxels is then divided by the Euclidean distance
between vi and v j. If all the traversed voxels are non-
zero, the result is the weight between vi and v j which
are said to be non-disconnected. Based on this, for each
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(a)               (b)                (c)

Figure 4: The scanned chair model (a) used in this example is made
of a single range image which, in turn, is made of several connected
components. By directly using the method in [5] on the range image,
the seat and the back are not properly separated (b). Conversely, by
using the blurred version of the model (r = 10 voxels) we could suc-
cessfully segment these two features of the shape (c). Model courtesy
of Aim@Shape’s repository.

triangle t, we check if it has at least two vertices non-
disconnected with two vertices of another triangle y. If
this is the case, we create an additional arc in the dual
graph whose weight is the average weight of the two tri-
angles’ non-disconnected vertices, which can be either
two or three pairs. When two clusters are merged (i.e. a
dual edge is contracted into a single node), to recompute
the weight of the arcs incident at the resulting node we
compute the average of all the contributing arcs. Finally,
the cost of each contraction is recomputed by dividing
the original L2 fitting residual by the weight of the dual
edge.

In other words, even if two clusters are disconnected
(in standard terms), if they are sufficiently close they
have still the chance to be merged, though with a
lower priority. Figure 5 depicts an example that shows
how a slight change in topology prevents the original
algorithm to calculate a correct segmentation, while
an appropriate result could be computed by using the
weighted connectivity. A further, more practical exam-
ple is shown if Figure 4, where one of the range images
of a scanned chair model is better segmented thanks to
the use of the weighted connectivity. Note that although
in this case the model does not enclose a solid, we could
exploit our notion of weighted connectivity by simply
creating a one-voxel thick solid from the input surface
mesh (i.e. each voxel which is intersected by one of the
triangles is a foreground voxel).

4.3. Shape description using inner distances

The notion of weighted arc-length may be adopted to
extend every shape descriptor rooted on the notion of
arc-length. As an example, we consider the inner dis-
tance that has been recently used to describe generic 2D

Figure 5: Mesh segmentations obtained using the method [5] on the
original model (a), inserting topological modifications (b) and using
the blurred solid (r = 10 voxels) of the modified model (c).

shapes in [29], and to compare 3D models of molecules
[31]. Given a solid model bounded by a closed sur-
face, the inner distance between two points p and q,
both on its boundary surface, is the length of the short-
est path connecting them. Herewith, to build a shape de-
scriptor robust to both isometric deformations and small
topological changes, we extend the inner distance his-
tograms to blurred solids.

Herewith, we loosely say that a deformation is iso-
metric if all the distances computed on the surface are
preserved after the deformation. Also, we say that a
topological change is small if it is induced by a small
deformation of the solid (i.e. no point of the solid is
moved too far away from its original position).

Weighted inner distances. For each skin voxel vi (i.e.
vi is foreground in B) we create a corresponding node
g(vi) in a graph g. Then, for each pair of skin vox-
els vi and v j, we create the arc < g(vi),g(v j) > in g
if the segment J connecting the centers of vi and v j in-
tersects only non zero voxels in R. Then, we multiply
the value of each voxel by the length of its intersection
with J, and the sum of such multiplied voxels weights
< g(vi),g(v j) > and is used as an approximation of the
weighted arc-length of vi and v j. After g is completely
built, the weighted inner distance for any node pair is
computed by Dijkstra’s algorithm.

To obtain a coherent description of two shapes and
control the size of g, we subsample their skins using the
same number of voxels and compute all the distances
between these subsamples only. To actually perform
this subsampling we use an adaptation of [18] on the
dual graph of the skin.

Histograms. The extraction of the shape descriptor as
the histogram of the inner distances between couples of
points has been described in [31]. Here, it has been
shown that this shape descriptor performs well when
comparing molecular models. Anyhow there is a large
literature in the use of histograms as signatures of ob-
ject properties, see for instance [43, 32, 44]. In our im-
plementation, we stack all the weighted inner distances
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into an array and create the corresponding histogram by
subdividing an interval [0,dmax], where dmax is an input
parameter, into a fixed number Nb of equally-sized bins.
The value of the bin bounded by (di,di+1) is equal to
the number of distances belonging to range (di,di+1).

Given two shapes, their dissimilarity is evaluated as
the L2 distance between their inner distance histograms.
Moreover, to have scale invariance, we have normalized
the models with respect to their volumes. The use of the
weighted connectivity significantly influences the shape
classification. For instance, the six objects in Figure 6
can be clustered either into two classes made of objects
with similar overall shape (i.e. the two rows in Fig. 6)
or three classes of topologically equivalent objects (i.e.
with respect to the number of handles). The dissimilar-
ity matrices in Figure 7 show how the weighted version
is more robust to topological changes.

Figure 6: These six objects can be classified in two different (and both
meaningful) ways, depending on the focus on either the overall shape
or the number of handles.

As a further example we consider a dataset made of
120 models subdivided into five classes of objects (20
human bodies, 30 cups, 30 eyeglasses, 20 aircrafts and
20 ants). In any of the five classes, each model may dif-
fer from the others for either a small topological change,
for an isometric deformation, or for details of the ge-
ometry. See for instance the varying human models in
Figure 8. On this dataset we have performed two types
of experiments: (1) the comparison with other state-of-
the-art methods and (2) the analysis of the performances
when the parameter r varies. Table 1 shows some statis-
tics on shape retrieval over our 120 model dataset com-
paring the performances of the weighted inner distance

Figure 7: Dissimilarity matrices obtained using the inner distance his-
tograms and the weighted extension on the models in Figure 6. Dark
pixels correspond to a good matches while bright ones denote bad
ones.

Table 1: Statistics over our 120 model dataset.
Method NN FT ADR

WID (r = 60) 98.333% 74.208% 70.677%
Inner distance 99.167% 65.583% 66.355%

SH [27] 95.833% 68% 67.432%
LF [12] 96.5% 73.319% 72.458%

(WID) against the classical inner distance, the spherical
harmonics [27] and lightfield [12] descriptors. The per-
formance indicators reported in Table 1 are rather stan-
dard in information retrieval [38, 20]; in particular, NN
represents the rate of shapes whose nearest neighbor is
in the same class, FT is the first tier, and ADR represents
the average dynamic recall.

Figure 8: Four models of the class humans in our generic dataset.
Models in a class may differ either by small topological changes, by
isometric deformations, or by details of the geometry.

When considering r as a variable of the method, we
observed that the retrieval performances smoothly in-
crease as r increase up to a local maximum, around
r = 60 voxels. For larger values of r, the performances
smoothly degradate. This fact is not surprinsing bacause
too small values of the blur are not able to overcome the
topological changes, whereas too big values produce an
indistict model.

In a different experiment, we observed that the
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weighted inner distance outperforms the classical one
on the SHREC dataset made of 1500 models [6] affected
by noise and topological artefacts, where the success
rate of nearest neighbor classifier of the weighted in-
ner distance computed with r = 20 passes from 78% to
81%.

5. Discussion

Clearly, the choice of the blur radius r influences both
the quality of the results and the performances of the al-
gorithms. On one extreme, when r is zero the blur is
actually a “normal” solid thus, in principle, this value is
not worth an actual use unless it is employed for com-
parison purposes.

Note that the objective of this paper is to introduce
an original concept for solid models which provides ad-
vantages with respect to the state of the art within a do-
main of particularly topology-sensitive problems. For
this reason, the task of searching an optimal value of
r for each specific implementation and problem tackled,
though being definitely interesting and important, is still
to be undertaken and is part of our future developments.
In this article, we only show that there exists a value of
r that makes the use of weighted topology advantageous
in two key case studies, and for a specific shape retrieval
scenario we could calculate an optimal value of r = 60
voxels.

We have experimented that weighted topology can ef-
fectively enlarge the applicability spectrum of a classi-
cal segmentation algorithm [5]. Differently from more
recent approaches such as [30], the adapted segmenta-
tion described in Section 4.2 can correctly capture even
disconnected segments whose “noisy” topology would
corrupt the computation of the part-aware metric. The
application to topologically-robust shape description in-
troduced in Section 4.3 can be compared to the approach
proposed in [7]. Also in this case, the use of a blurred
solid makes it possible to tolerate a larger set of small
topological changes; for example, we can detect the
similarity of a single object with a version of it which
is broken into several pieces, provided that such pieces
are placed sufficiently close and in the correct position.
Clearly, such a modification would spoil the results of
any method based solely on a surface metric, even if it
is diffused such as in [7].

The conversion of an input mesh into a blurred solid
based on the implementation proposed in Section 4.1
does not require a significant amount of time. Specifi-
cally, the time spent to produce the results shown in this
paper is reported in Table 2. Furthermore, the 120 sig-
natures for the models in the database used in Section

4.3 were computed in about 14 minutes, which includes
the whole processing pipeline starting from the mesh
loading, ranging through its voxelization and blurring,
and ending to the saving of the resulting signature. Un-
der the same circumstances, the SHREC dataset made
of 1500 models described in [6] was processed in 2.5
hours.

6. Conclusion and future work

Weighted topology allows a robust analysis of ab-
stract and qualitative aspects of the shapes, and is useful
to improve the performances of shape descriptors based
on distances, and in particular their robustness when the
objects are subject to small topological changes. Fur-
thermore, the new model extends the application do-
main of classical mesh segmentation algorithms. The
new model is useful in numerous applications, ranging
from mesh processing to advanced shape analysis, and
we plan to investigate these areas in the future. On the
theoretical side, we plan to study how the concept of
Betti numbers can be extended to blurred solids with
weighted topology. We expect that further studies allow
to derive important properties that can be exploited to
devise new robust algorithms with strong guarantees.
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