
Steepest descent paths on simplicial meshes of arbitrary dimensions

Mattia Natalia,b, Marco Attenea,∗, Giulio Ottonelloc

aCNR-IMATI, Italy
bUniversity of Bergen, Norway

cUniversity of Genova, Italy

Abstract

This paper introduces an algorithm to compute steepest descent paths on multivariate piecewise-linear functions on
Euclidean domains of arbitrary dimensions and topology. The domain of the function is required to be a finite PL-
manifold modeled by a simplicial complex. Given a starting point in such a domain, the resulting steepest descent
path is represented by a sequence of segments terminating at a local minimum. Existing approaches for two and three
dimensions define few ad-hoc procedures to calculate these segments within simplexes of dimension 1, 2 and 3. Un-
fortunately, in a dimension-independent setting this case-by-case approach is no longer applicable, and a generalized
theory and a corresponding algorithm must be designed. In this paper, the calculation is based on the derivation of the
analytical form of the hyperplane containing the simplex, independently of its dimension. Our prototype implemen-
tation demonstrates that the algorithm is efficient even for significantly complex domains.

1. Introduction

Being able to efficiently calculate the local minima
of a real-valued function is of clear importance for nu-
merous application contexts. In some domains, such as
physics or chemistry, it is not rare to deal with prob-
lems where the function F to be minimized represents
the status of a system, and its local minima represent
particular configurations for which the system is stable
or in equilibrium. It is thus interesting to know how
such a system evolves towards a stable state when left
unconstrained from an initial configuration. Such an
evolution can be represented within the domain of F by
a sequence of configurations that form a path connect-
ing the initial state with the final stable state. Normally
the system cannot jump from a configuration to another
without continuity (though there are exceptions, e.g. in
quantum mechanics) and thus the path is continuous as
well.

For several natural phenomena, a given non-stable
state tends to change towards equilibrium with maxi-
mum speed. Such a phenomenon can be modeled by
a real-valued function F that associates an energy with
each state of the system and, if F is differentiable, the

∗Corresponding Author
Email address: marco.attene@ge.imati.cnr.it (Marco

Attene)

direction of the maximum speed is the direction of the
negative gradient of F. When the function is expressed
through a closed analytical form, computing the gradi-
ent becomes a matter of symbolic calculus and thus is
relatively easy. In contrast, when the function is de-
scribed through a finite set of samples, one may need to
employ more sophisticated techniques.

In this paper, we review the methods proposed so
far to compute steepest-descent paths on piecewise lin-
ear surface meshes, and generalize them within a uni-
fied approach that works on simplicial complexes of
any dimension. Furthermore, we provide a novel so-
lution to resolve the cases of indifferent equilibrium that
may arise when tracking the steepest descent path. Fi-
nally, we show how our solution can be exploited in the
field of Material Sciences to study the crystallization of
molten substances.

Note that generalizing existing algorithms is not as
easy as it could appear at a first sight. On triangle
meshes, for example, there are three possibilities: (1)
the path passes through triangles, or (2) it may run
along edges or (3) it may cross vertices. Thus, algo-
rithms treating these models can enumerate a few pos-
sibilities and handle each of them as a particular case.
Furthermore, the treatment of special cases of indif-
ferent equilibrium can also be handled by enumerating
the possibilities. Conversely, in a generalized approach
such as the one introduced in this article, a dimension-

Preprint submitted to Computer & Graphics May 23, 2013

independent solution must be provided which can treat
all the cases based on a common approach. To the best
of our knowledge no solution to this problem has been
proposed so far, while there are application contexts
(e.g. Material Sciences) that call for a solution.

1.1. Related work

The steepest descent method, also known as gradi-
ent descent method, is an algorithm to compute local
minima of real-valued functions of n variables. While
running, it constructs a piecewise-linear approximation
of the steepest descent path connecting an initial point
to a local minimum.

1.1.1. Steepest descent direction for differentiable func-
tions

Formally, if f : Rn −→ R is a real function and
∇ f (x) = (∂ f

∂x1
, ∂ f
∂x2
, . . . , ∂ f

∂xn
) is its gradient, then the steep-

est descent direction for x0 ∈ Rn is given by the vec-
tor d = −∇ f (x0). When starting from an initial point
x0, the steepest descent method computes a new point
x1 := x0 − α∇ f (x0). Then, in a second step it com-
putes another point x2 := x1 − α∇ f (x1), and so on. In
general, the algorithm computes a sequence of points
x0 . . . xk that is expected to converge to a local mini-
mum. The positive parameter α might be kept constant
or can change from step to step. Small values of α pre-
vent the algorithm to oscillate around minima, but too
small values might significantly slow down the entire
process.

Near minima, the steepest descent method tends to
go slowly and in some cases to have an erratic path. For
these reasons, other minimization algorithms have been
proposed: notable examples are the conjugate gradient
that uses conjugate directions instead of the local gra-
dient to take into account the previously-chosen direc-
tions, and the Newton-Raphson that exploits informa-
tion of the second derivative to locate the minimum of
the function.

With small modifications, the steepest descent
method can be adapted to the case of piecewise-linear
meshes [1] approximating differentiable functions. In
this case, there is no need to choose the parameter α be-
cause each segment of the path is bounded by the size
of mesh elements. As a consequence, the aforemen-
tioned drawbacks are no longer an issue. Unfortunately,
though there are some methods for calculation on two
([1]) and three ([2, 3]) dimensional meshes, a complete
adaptation is missing for the cases where differentiable
functions are defined on n-dimensional simplicial do-
mains.

1.1.2. Piecewise linear functions on simplicial meshes
When the domain is a two-dimensional simplicial

mesh, several methods exist to calculate steepest de-
scent paths. A big family of algorithms uses descent
(and ascent) paths to bound the cells of the so-called
Morse-Smale complexes [3, 2, 1]. Within this family,
the methods described in [4, 5, 6] force the steepest de-
scent paths to be sequences of mesh edges. Specifically,
these approaches start at a given vertex, and at each step
simply choose the neighboring vertex associated with
the smallest function value. Though these algorithms
are extremely efficient, they produce only approximate
solutions. Conversely, in [7, 8] the paths are computed
based on [1] and are free to cross the triangles, therefore
produce much more precise results. These algorithms
have applications in both Computer Graphics [9, 10]
and Visualization [11].

Clearly, if the function is piecewise-linearly defined
on a simplicial mesh, the gradient is generally unde-
fined for points on edges and for the vertices, so it may
be necessary to provide an estimate for these particular
cases. If pi is the position of the ith vertex of a closed
and manifold triangle meshM, then the gradient of the
function f :M −→ R can be estimated as [12]:

∇ f (pi) :=
∑

j∈N(i)

[f (p j) − f (pi)] w j , (1)

where the w js are proper weights that do not depend
on f , andN(i) is the set of vertices connected to i by an
edge.

In contrast, the gradient ∇ f can be computed exactly
for points within triangles. Furthermore, ∇ f does not
change across the points within a given triangle. So, on
a triangle t with vertices (pi,p j,pk) and unit normal N,
the gradient is the solution ∇ f |t of the 3×3 linear system
[13]: p j − pi

pk − p j

N

∇ f |t =

 f (p j) − f (pi)
f (pk) − f (p j)

0

 (2)

Therefore, alternatively to Eqn. 1, the steepest direc-
tion at the vertex position pi can be estimated by consid-
ering its incident triangle’s gradient having largest mag-
nitude.

The most detailed description of an algorithm that
computes the steepest paths is given for the 2-
dimensional case in [1]. Therein, the path can go along
edges or pass through faces of the triangulation. Three
cases occur for a starting point p of the path: (1) p is in
the interior of a triangle - the steepest direction is unique
and orthogonal to the level lines (eg. Eqn. 2); (2) p is

2

in the interior of an edge - one or two locally steepest
directions are possible; (3) p is a vertex - there may be
as many locally steepest directions as the number of its
incident triangles.

The case of 3-dimensional manifold domains is
treated in [2, 3], where smooth manifolds are approx-
imated with piecewise linear simplicial complexes that
linearly interpolate samples of the function f . Both in
[3] and in [2] ascending/descending arcs are defined
as piecewise linear curves (1-manifolds) between sad-
dles and maxima/minima lying along edges of the input
mesh.

2. Definitions and problem statement

In this section basic definitions are introduced to sup-
port a formal description of the algorithm. The follow-
ing definitions are adapted from [14] and [15].

2.1. Simplicial complexes
A k-dimensional simplex, or k-simplex, Ak is a set

V = {v0, . . . , vk} of k + 1 objects called vertices, together
with the set of real-valued functions α : V → R satis-
fying

∑
vi∈V α(vi) = 1 and α(vi) ≥ 0. A function α is

called a point of Ak. The values α(v0), . . . , α(vk) are the
barycentric coordinates of the point α.

A (proper) face B of Ak, denoted B < Ak, is a simplex
determined by the (proper) subset W ⊂ V , whose points
β : W → R are identified with the points α : V → R
such that α(vi) = β(vi) if vi ∈ W and α(v j) = 0 if v j ∈

V −W. If B is a face of A, then A is said to be incident
at B.

A finite simplicial complex K is a finite set of sim-
plices such that:

i) if A ∈ K and B < A, then B ∈ K;

ii) if A, B ∈ K, then A ∩ B is either empty or it is a face
of both A and B.

From now on, we shall omit the term finite.
The dimension of K is the dimension of the largest

dimensional simplex belonging to K. A simplicial com-
plex of dimension n is homogeneous if it is made of
n-simplices and their faces. Within an n-dimensional
simplicial complex, a k-simplex is said to be maximal if
k = n.

The boundary ∂A of a simplex A is the complex made
of the proper faces of A. The boundary ∂K of a ho-
mogeneous n-dimensional simplicial complex K is the
(n−1)-complex obtained as the sum mod 2 of the (n−1)-
dimensional simplices of the boundary ∂A of each of the
n-simplices A ∈ K plus their faces.

L is a subcomplex of K if L is a complex and L ⊂ K.
For A ∈ K, the (closed) star of A in K, star(A,K), is the
subcomplex of K made of all simplices of K having A
as a face plus all their faces. If A ∈ K, then the link of
A in K, link(A,K), is the set of simplices in star(A,K)
whose intersection with A is empty.

A geometric realization |Ak | of a simplex Ak in the
Euclidean space Rn, n ≥ k, can be obtained by defining
a bijection between the vertices of Ak and a set of k + 1
affinely independent points p0, p1, . . . , pk of Rn, so that
|Ak | = {(t0 p0 + t1 p1 + . . .+ tk pk) ∈ Rn | ti ≥ 0,

∑
i ti = 1}.

Thus, |Ak | is the convex hull of p0, . . . , pk and is said to
be an Euclidean simplex.

The underlying space |K| of K is the union ∪A∈K |A|
of the geometric realization of its simplices. An under-
lying space |K| of a k-dimensional simplicial complex
K is unambiguously defined by a bijection between all
the vertices of K and a corresponding set of points of
Rn, n ≥ k, such that the image of the vertices of each
simplex consists of affinely independent points.

2.2. Problem statement

Herewith, some novel definitions are introduced to
better explain the problem and the proposed algorithm.
In particular, we need to formally define sets of com-
binatorial entities that, after a geometric realization,
assume a special relationship with a given Euclidean
point.

Let |K| be the underlying space of K, and let x be a
point in it. We say that the influence set of x in K is
the set of all the simplices whose geometric realization
contains x. That is:

iset(x,K) = {σi ∈ K : x ∈ |σi|} (3)

Furthermore, we say that the boundary set of x in K
is the set of all the faces of simplices in iset(x,K) whose
geometric realization does not contain x. That is:

bset(x,K) = {σi : σi < σ j, σ j ∈ iset(x,K), x < |σi|}

(4)
For example, if we denote with t the geometric real-

ization of a 2-simplex σ ∈ K, t is a triangle, the influ-
ence set of its barycenter is σ whereas its boundary set
is made of the three vertices and the three edges being
faces of σ. Notice that the influence set of the geomet-
ric realization of a vertex |v| coincides with its open star
(i.e. star(v) \ link(v)), and the boundary set of |v| is ex-
actly link(v). It is worth mentioning, however, that we
cannot simply replace iset and bset with the more stan-
dard star and link. Though a relation actually exists,
in fact, iset and bset map arbitrary Euclidean points to

3

(a) (b)

(c) (d)

Figure 1: Possible positions of a starting point in a two dimensional
complex. In (a), iset(p,K) = {σ1} and just one direction must be
evaluated to proceed to the next point q. When p is on an edge, the
ith ray may (b), or may not (c), intersect a face of σi belonging to
bset(p,K) (note that in (c) each of the two arrows points outwards wrt
the corresponding σi). If p is a vertex (d), the cardinality of iset(p,K)
increases and several directions must be considered.

subcomplexes, whereas the star and link map simplexes
to subcomplexes, and a conversion makes sense only
when the Euclidean point being mapped coincides with
the geometric realization of a vertex, as in the afore-
mentioned example.

Let K be a finite n-dimensional simplicial complex,
VK be the set of its vertices, and r : VK → Rn be a map-
ping function defining an underlying space |K|r which
is an n-manifold with boundary (i.e. |K|r is a PL n-
manifold [14] with boundary). Also, let us consider a
function f ∗ which associates a real value with each ver-
tex of K, and a corresponding map f : |K|r → R such
that, if σ is a vertex x = r(σ) =⇒ f (x) = f ∗(σ),
whereas if σ is a higher-dimensional simplex and x ∈
|σ| then the value of f (x) is defined by linearly interpo-
lating the value of f at its vertices.

Having said that, our problem can be summarized as
follows: given an initial point p0 ∈ |K|r, determine a
sequence of points p0 . . . pk, pi ∈ |K|r, such that pi+1 ∈

|bset(pi,K)|r maximizes the quantity ∆i =
f (pi)− f (pi+1)
‖pi+1−pi‖2

and ∆i > 0.

Thus, the objective of the algorithm is not just the
determination of the local minimum, but the determina-
tion of the whole path that reaches that minimum while
following the direction of steepest descent.

3. Algorithm description

In the easiest case, the algorithm starts with a given
point p0 within a (maximal) n-dimensional simplex σ0,
computes the direction of steepest descent −∇0 and
shoots a ray from p0 in the direction of −∇0. The ray
intersects an n − 1-dimensional simplex which is a face
of both σ0 and an opposite maximal simplex σ1. Let p1
be the point of intersection and −∇1 be the direction of
steepest descent calculated within σ1. Once again, the
algorithm shoots a ray from p1 in the direction of −∇1,
intersects another n−1-dimensional simplex, and so on,
as long as ∆i is positive.

Actually, this is just a particularly easy case. In
practice lower-dimensional simplices (i.e. of dimension
< n − 1) can be intercepted along the path, can contain
the starting point p0, or can even contain whole parts of
the path. Thus, a procedure is necessary for the calcu-
lation of the gradient vector within both maximal sim-
plices (see section 4.1) and lower-dimensional simplices
(see section 4.2). Furthermore, when the point pi lies
on a simplex of dimension < n − 1, the gradient must
be computed for all its incident simplices of any dimen-
sion, and the path proceeds on the simplex for which ∆i

is maximized.
Figure 1 illustrates the various possibilities for a start-

ing point p when K is two-dimensional. In (a), p lies
within a maximal simplex, so it is sufficient to calculate
the gradient within the simplex to determine the next
point q of the path, which might lie either on a ver-
tex or on an edge of the simplex. In (b), p is on a 1-
dimensional simplex, so it is necessary to compute the
gradient for the simplex itself and for both its incident
triangles, and choose the one that maximizes ∆i; in this
case ∆i is maximum for one of the incident triangles. In
contrast, in (c) p is on a valley line, so ∆i is maximum
on the 1-dimensional simplex. Note that in this case the
ray shot from p towards the negative gradient of one of
the incident triangles would not intercept any edge of
the same triangle. Finally, in (d) p is on a 0-simplex, so
all its incident simplices must be considered.

3.1. Construction pipeline

Observe that the assumption that |K| is a manifold
with boundary guarantees that |bset(|v|,K)| is a topolog-
ical sphere if v is an internal vertex, whereas it is a topo-
logical semi-sphere if v is on the boundary. Therefore,
if v is internal, each ray emanating from it must neces-
sarily intersect a point of |bset(|v|,K)|.

Let K be an n-dimensional mesh, with its geomet-
ric realization |K| that is an n-dimensional PL-manifold
with boundary in Rn. Also, let p0 ∈ |K| be the starting

4

point of the steepest descent path we are looking for.
In the first step, the algorithm determines the set of sim-
plices in the influence set of p0, that is, iset(p0,K). Note
that the cardinality of this set depends on the dimen-
sion of the minimal simplex whose realization contains
p0. For example, if p0 corresponds to the realization of
a vertex |v|, then all the simplices incident at v are in
iset(p0,K). On the other extreme, if p0 belongs to the
interior of the realization of a maximal simplex, then
only that simplex will be in iset(p0,K). In any case,
for each simplex σi in iset(p0,K) we derive the gradi-
ent vector (∇ f)σi as described in section 4, and compute
the intersection pi

1 between |bset(p0,K)| and the ray em-
anating from p0 in the direction of −(∇ f)σi . If such an
intersection does not exist, it means that p0 is on the
boundary of K and the computed direction would move
the path outside the domain; thus, we declare −(∇ f)σi

to be an “invalid” direction. In general, a direction
−(∇ f)σi is declared to be “valid” if and only if the inter-
section pi

1 exists and belongs to a face of σi. For all the
“valid” directions computed within iset(p0,K), we com-
pute the quantity ∆i = (f (p0) − f (pi

1))/||pi
1 − p0||2 and

select the point p j
1 that maximizes it. If such a maximum

quantity is negative, we have reached a local minimum.
Otherwise, p1 = p j

1 becomes the new starting point for
our path computation, and the algorithm iterates.

A pseudo-code describing the method is given in al-
gorithm 1.

3.1.1. Flat simplices
If the maximum ∆i is zero, it means that we have

reached a “flat” simplex having the same function value
associated with all its vertices. In the case of flat sim-
plices, we have adopted a strategy based on the follow-
ing principle: if a simplex σF is flat but some of its
neighbors are not, then such a flatness may be a conse-
quence of the discretization of the domain of f , so we
may consider it as a sort of artefact. In contrast, if both
σF and all its neighbors are flat, then we assume that the
function is well represented and is actually flat in that
region. Therefore, when the path reaches a flat simplex
σF (Fig. 2(a)), we consider the union of the influence
sets of all its (realized) vertices, that we conveniently
denote as iset(|σF |,K) (Fig. 2(b)). For each simplex
σi ∈ iset(|σF |,K), σi , σF and σi ≮ σF , we check the
flatness. If all the σis are flat, then the algorithm termi-
nates. Otherwise, for each non-flat σi we compute the
next point pF as the barycenter of the maximal common
face of σi and σF , then compute the successive point
pF+1 and evaluate ∆i based on it. If the maximum ∆i

among all the σis is negative the algorithm terminates,
otherwise the corresponding pF and pF+1 are added to

Algorithm 1 Steepest descent path construction.
Require: A simplicial complex K, the value of f ∗ at

each vertex of K, and a point p0 on |K|.
Ensure: A sequence p0 . . . pk, pi ∈ |K|, s.t. pi+1 ∈

|bset(pi,K)| maximizes ∆i and ∆i > 0.

1: i = 0
2: ∆max = −∞

3: compute iset(pi,K)
4: for each simplex σ j

i in iset(pi,K) do
5: compute (∇ f)σ j

i

6: p j
i+1 := intersection between |bset(pi,K)| and the

ray from pi in the direction of −(∇ f)σ j
i

7: if (p j
i+1 exists AND p j

i+1 is on a face of σ j
i) then

8: compute ∆i = (f (pi) − f (p j
i+1))/||p j

i+1 − pi||2
9: if (∆i > ∆max) then

10: ∆max = ∆i

11: pi+1 = p j
i+1

12: end if
13: end if
14: end for
15: if (∆max > 0) then
16: i++

17: goto 2:
18: end if

the path (in this order) and the algorithm iterates (Fig.
2(c)).

This strategy to deal with flat simplices is based on
the assumption that f ∗ is typically computed by sam-
pling another continuous function g using a regular pat-
tern. In cases such as those in Figures 3 and 12, for
example, it is easy to find flat simplexes approximating
parts of g which have an unambiguous steepness. This
is even more evident when the samples are taken on con-
tours: in Figure 6, for example, there are numerous flat
triangles that actually cut descending crests and valley
lines. Note that in all these cases, isolated flat triangles
can be there just because of the regularity of the pat-
tern used, and thus our approach to cross them gives the
expected results.

4. Gradient evaluation

In order to implement the proposed algorithm, we
need a procedure to derive the gradient vector of f at
each point in its domain |K|r. A point p ∈ |K|r can ei-
ther be the image of a vertex or belong to the image
of a higher-dimensional simplex. We first consider the
case where p belongs to the image of a maximal sim-

5

(a) (b) (c)

Figure 2: Proceeding on a flat region: (a) a flat simplex σF and (b) its corresponding iset(|σF |,K); (c) pF is the edge’s midpoint (i.e. its barycenter)
and pF+1 maximizes ∆i.

plex (i.e. if K is n-dimensional, a simplex is maximal if
its dimension is n). Afterwards, we generalize the result
to lower-dimensional simplices through dimensionality
reduction.

4.1. Evaluation in maximal simplices

Our aim is to find the gradient vector of f at all
the points within an Euclidean simplex |σ| defined by
n + 1 vertices, let them be p1 = (p1

1, . . . , p1
n), . . . ,pn+1 =

(pn+1
1 , . . . , pn+1

n). In this section we derive the analytic
form, inside |σ|, of the function f explicitly defined only
at the vertices and assumed to be linear within the sim-
plex. Such an analytical form is a hyperplane, thus the
gradient vector is constant and can be easily derived by
applying the definition:

∇ f (x) = (
∂ f
∂x1

,
∂ f
∂x2

, . . . ,
∂ f
∂xn

).

To summarize, f : |σ| −→ R is explicitly defined just
at the vertices and linear interpolation is assumed for
the other (internal) points. Then, the analytic form of f
within the simplex is computed (Section 4.1.1) and the
n gradient vector coordinates are defined as the first n
coefficients of such an analytic form.

4.1.1. Hyperplane by n points
Let A1, . . . , An be n affinely independent points of the

n-dimensional Euclidean space (eg. the vertices of an
Euclidean simplex). The implicit equation of the hyper-
plane spanned by A1, . . . , An can be obtained by expand-
ing the determinant:∣∣∣∣∣∣∣∣∣∣∣∣

x1 · · · xn 1
← A1 → 1

...
...

← An → 1

∣∣∣∣∣∣∣∣∣∣∣∣ = 0,

We observe that the value of f can be appended as
an (n + 1)th coordinate to each vertex of |σ|. Since f is

piecewise-linear, the resulting n-dimensional Euclidean
simplex spans a hyperplane Πσ of Rn+1.

To derive the analytic form of Πσ we exploit the
above determinant formulation by instantiating the
points Ai with the enriched vertices of |σ|, that is:∣∣∣∣∣∣∣∣∣∣∣∣

x1 · · · xn f (x1, . . . , xn) 1
p1

1 · · · p1
n f (p1

1, . . . , p1
n) 1

...
...

...
...

...
pn+1

1 · · · pn+1
n f (pn+1

1 , . . . , pn+1
n) 1

∣∣∣∣∣∣∣∣∣∣∣∣ = 0.

By expanding this determinant, for example with re-
spect to the first row, and making it equal to zero, we
obtain:

λ1x1 + . . . + λnxn − λn+1 f (x1, . . . , xn) + λ0 = 0,

λi ∈ R, which can be rewritten as

f (x1, . . . , xn) =
λ1

λn+1
x1 + . . . +

λn

λn+1
xn +

λ0

λn+1
.

The above equation is the analytic form of f inside the
Euclidean simplex defined by points p1, . . . ,pn+1, thus
its gradient vector is

∇ f (x) = (
∂ f
∂x1

, . . . ,
∂ f
∂xn

) = (
λ1

λn+1
, . . . ,

λn

λn+1
).

From an algorithmic point of view, the entire process
requires the computation of n + 1 determinants of (n +

1) × (n + 1) matrices. If we denote

M =

p1

1 · · · p1
n f (p1

1, . . . , p1
n) 1

...
...

...
...

...
pn+1

1 · · · pn+1
n f (pn+1

1 , . . . , pn+1
n) 1

 ,
thus λi is the determinant of the matrix obtained by
eliminating the i-th column from M.

Example: We assume n = 3 and we want to find
the gradient vector of function f inside a simplex de-
fined by the four points p1 = (1

2 ,
3
2 , 1), p2 = (1, 1, 2),

6

p3 = (2, 2, 0) and p4 = (0, 0, 0), with respective values
f (p1) = 10, f (p2) = 2, f (p3) = 3, f (p4) = 0. Thus the
hyperplane equation (in R4, where unknows are x, y, z
and w = f (x, y, z)) is defined by∣∣∣∣∣∣∣∣∣∣∣∣∣∣

x y z f (x, y, z) 1
1
2

3
2 1 10 1

1 1 2 2 1
2 2 0 3 1
0 0 0 0 1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
= 0.

that becomes

−30x + 36y + z − 4 f (x, y, z) = 0.

Therefore

f (x, y, z) = −
15
2

x + 9y +
1
4

z

and
∇ f (x) = (−

15
2
, 9,

1
4

).

4.2. Evaluation in lower-dimensional simplices
When the simplex is not maximal, the approach de-

scribed in Section 4.1 cannot be applied “as it is” be-
cause the matrix would be rectangular. Thus, our ap-
proach is based on a projection of the simplex onto a
lower-dimensional space so that it becomes maximal.
In such a new space we can derive the gradient as de-
scribed in Section 4.1, and the resulting vector can be
transformed back to the original high-dimensional space
by inverting the projection matrix.

Thus, let |σ| be defined by m vertices p1 =

(p1
1, . . . , p1

n), . . ., pm = (pm
1 , . . . , pm

n), with m < n + 1.
We observe that the set of m − 1 vectors g1 = p2 − p1,
g2 = p3 − p1, . . ., gm−1 = pm − p1 constitutes a basis
of the (m − 1)-dimensional Euclidean space where σ is
maximal. So, we translate |σ| so that its first vertex p1

coincides with the origin of Rn. Then, we consider the
(m−1)×(n) matrix G made of the gis and orthonormalize
it (eg. through Gram-Schmidt). By right-multiplying
the orthonormal matrix G⊥ by each vertex of |σ| we ob-
tain an (m− 1)-dimensional Euclidean simplex in Rm−1.
After having derived the (m − 1)-dimensional gradi-
ent vector of f as described in Section 4.1, we right-
multiply GT

⊥ by ∇ f to transform it back to the original
space Rn.

5. Implementation and results

Since the algorithm is dimension-independent, in our
implementation we have employed an extended indexed

data structure with adjacencies [16] enriched with func-
tion values at vertices. Namely, if the mesh is n-
dimensional and made of NV vertices and NS maximal
simplices, our data structure explicitly encodes:

• an array G of NV n-uples of coordinates represent-
ing the vertex positions along with an array F of
NV corresponding function values;

• an array S of NS (n + 1)-uples of indexes in G rep-
resenting maximal simplices along with an array O
of NS (n+1)-uples of indexes in S representing the
corresponding adjacent maximal simplices;

• an array M of NV indexes in S representing, for
each vertex, one of the incident maximal simplices.

Using this structure, we can extract all the geometrical
and topological information required for the execution
in optimal time. The algorithm has been implemented
in C++.

(a) (b)

Figure 3: Path computed on a known function for verification. The
surface is the image of f (x, y) = sin(x) + cos(y). The path starts from
(0, 0) in (a) and from (1, 1) in (b).

Figure 4: Steepest descent path computed on a large model of
the Kilimanjaro volcano (1 million triangles, Model courtesy of
Aim@Shape’s repository). On volcanos, these paths can be used to
predict possible lava flows.

Though we have tested our prototype on meshes of
various dimensions, for n ≥ 4 visualizing the results is

7

tricky and not very informative. Thus, with the excep-
tion of figure 12, we herewith show some of our results
for domains of dimensions two and three only. Note
that in some two-dimensional cases the value of f may
represent a height (eg. Figures 4, 6 and 3), whereas in
some other cases the function may have a completely
different meaning (eg. a temperature, such as in Figure
5). Nevertheless, to better conceive the results through
our illustrations, for any two-dimensional mesh we have
used the value of f as a third coordinate, thus embed-
ding the 2-dimensional complex in R3, even if f does
not represent a height. In contrast, for most illustrations
regarding three-dimensional domains (Figures 7, 8, 9
and 10) we have used the height (i.e. the z coordinate)
to define the value of f , with the exception of Figure 11
where the function values are provided aside and repre-
sent a potential.

Figure 5: The so-called ”liquidus surface” of a ternary chemical sys-
tem. The local minimum reached by the path represents a stable state
of the material.

Figure 6: Steepest descent path on 2-dimensional simplicial complex
representing a terrain.

5.1. Computational times
The size of the experimental data sets shown in this

paper ranges from a few hundred to more than a million
simplices. Experiments have been performed on a stan-
dard desktop PC equipped with a Intel(R) Core(TM)2

(a) (b)

Figure 7: A cubical domain with an associated function f (x, y, z) = z.
In (a) the cube is aligned with the coordinate system, and the path tra-
verses only lower-dimensional simplices. In (b) the cube is rotated: as
expected, the path descends vertically through the solid until it reaches
the boundary, then it follows the steepest direction on the boundary of
the domain.

Figure 8: Two points of view of the same path computed on a tetrahe-
dral mesh. Model courtesy of Aim@Shape’s repository.

6320 @ 1.87GHz and 4096MByte RAM. In table 1 and
table 2 execution times are reported for meshes of di-
mension two and three respectively. To provide the
reader an idea of the complexity of the input, the ta-
bles indicate both the number NV of vertices and the
number NS of maximal simplices. However, the num-
ber of operations (and hence the execution time) per-
formed by the algorithm depends mostly on the number
of simplices traversed by the path.

Figure 9: Paths computed starting from two different points of the
same tetrahedral mesh. Model courtesy of Aim@Shape’s repository.

8

Model NV NS time
CAS (fig.5) 3777 7416 0.027
Quark (fig.3) 3969 7688 0.019
Vobbia (fig.6) 7745 15312 0.051
Kilimanjaro (fig.4) 490001 977204 0.78

Table 1: Execution time for the models of dimension two made of NV
vertices and NS triangles. Time is expressed in seconds and does not
include input/output operations.

Model NV NS time
Cube (fig.7(a)) 182 436 0.042
Rotated Cube (fig.7(b)) 103 239 0.026
Aorta (fig.8) 9529 35551 0.219
Horse (fig.9) 837 2152 0.076
Dino (fig.10) 11979 61527 0.231
Bucky (fig.11) 262144 1250235 0.456

Table 2: Execution time for the models of dimension three made of
NV vertices and NS tetrahedra. Time is expressed in seconds and does
not include input/output operations.

5.2. Robustness, stability and accuracy

Instability is intrinsic at each point of the domain
where the gradient vanishes, and small perturbations
may lead to dramatically different gradient directions.
In particular, if the point is a local maximum of a differ-
entiable function, any direction in the domain is equally
eligible to track a steepest-descent path. The most con-
servative approach would be to compute all the possible
paths, but unfortunately they might be an infinite num-
ber. If f is a Morse function [17] algorithms exist to
compute the so-called descending Morse complex; from
such a structure one can easily understand which are the
points that can be possibly part of a descent path starting
at a local maximum. Unfortunately, these algorithms
are known only for domains of dimension two and three.
For this reason, for now we just ignore the problem and
let the algorithm provide one of the possible solutions.

From the computational point of view, the discretiza-
tion might be a further issue. In several cases, a smooth
function f is only partially defined through a finite sam-
pling of its domain which is linearly interpolated within
a simplicial mesh. To be conservative, also in this case
we may need to produce infinite solutions where the
path crosses a flat simplex. However, as mentioned in
section 3, depending on the surroundings we may inter-
pret such a flatness as an artefact and let the algorithm
provide one of the possible solutions.

It is also worth speculating about the accuracy of our
algorithm when it is used to process a discretized ver-
sion of a Morse function f . If x0 is the starting point and

Figure 10: A path computed starting from an internal point of a dense
tetrahedral mesh. As expected, the path goes vertically as long as it
can, while it correctly follows the boundary when necessary. Model
courtesy of Pierre Alliez.

h is the sampling step used, we may consider the follow-
ing cases: if h is too large some simplices might actu-
ally cancel small local minima, and the resulting path
might be longer than expected; if h is sufficiently small
but x0 is closer than h to the border of a maximal cell
of the stable Morse complex of f (e.g. Fig 3(a)), the
path may take a wrong direction and fall into a different
minimum; in all the other cases the path ends within a
maximum distance h from the ideal minimum.

Furthermore, when the samples of f are corrupted by
noise, the function itself should be smoothed to pre-
vent the path to be broken at a spurious local mini-
mum. While advanced techniques exist for two dimen-
sions [18, 19], the case of higher dimensions has been
mostly left uninvestigated. Finally, the computation of
the hyperplane of a nearly degenerate simplex is ill-
conditioned, and also in this case existing work to re-
move such undesired degeneracies is mostly dedicated
to two and three dimensions [20].

When the function is actually piecewise linear (i.e.
it is not an approximation) our algorithm provides an
exact result. This happens, for example, in the case
of a linear program whose constraints define a convex
polytope. In this case one may also use Dantzig’s sim-
plex algorithm while being guaranteed to reach the same
correct minima. Differently from the simplex method,
however, our algorithm is free to cut through higher-
dimensional simplexes and can work on nonconvex do-
mains. On convex domains, passing through edges only
(as done by the simplex algorithm) is sufficient to reach
the final exact minimum, though the path is not neces-
sarily exact. In contrast, the same constraint on noncon-
vex domains might cause the path to reach completely
wrong results.

In case of 2- and 3-dimensional meshes, existing
methods can be applied to compute steepest paths.

9

These paths are sometimes called integral curves and
they are mainly used to generate Morse-Smale com-
plexes. Amongst these existing algorithms, some [7, 8]
allow paths to cut through maximal simplices, as we
do, and perform in similar time. In these cases our al-
gorithm achieves exactly the same results while being
more general. Conversely, other methods (e.g. [4], [5],
[6]) are more efficient than ours, but only return an ap-
proximation of the steepest path since they build it as a
collection of edges (1-simplices). For this reason, these
methods often require an initial mesh refinement to re-
duce inaccuracy.

Figure 11: A complex tetrahedral mesh (1.25 million tets) discretizing
a potential f around a carbon molecule with a path reaching a local
minimum of f . Model courtesy of Aim@Shape’s repository.

5.3. Generalization

The algorithm described in this paper has numerous
practical applications, including the prediction of lava
flow paths (Fig. 4) and the computation of stable states
reachable by cooling molten substances (Fig. 5). In
some cases, however, the knowledge of the function
alone is not sufficient to accurately predict the evolu-
tion of a system, and further variables may be necessary
to provide a more comprehensive and precise model of
the phenomenon. For example, when trying to predict a
lava flow, one should take into account that the flowing
material has an inertia. Thus, to better predict the path,
we should correct the steepest descent direction by us-
ing an additional inertial term. As a further example,
in material sciences one can predict the result of a crys-
tallization process by following descent lines on the so-
called liquidus hypersurface (see Section 5.4), but such
lines are not necessary locally steepest at all their points,
because their direction depends on additional variables.

We may adapt our algorithm by providing a general-
ized approach to determine the direction to be followed
at all the points. Specifically, the gradient field can be
computed in advance (once for each simplex) and possi-
bly corrected by considering additional terms. Thus, the
input to the adapted version of the algorithm is a sim-
plicial complex where each simplex is associated with

a vector specifying the direction of movement when ly-
ing in it, and the magnitude of the vector corresponds
to the steepness in that direction. In this setting, for
each simplex σ the value of ∆i is just the magnitude
of the vector vσ associated with σ. If the input vectors
form a nongradient vector field [21] some of the paths
may be closed loops, thus the visited simplices should
be marked to avoid the algorithm to infinitely loop.

5.4. Applications in material research

Material research (ceramurgy, glass technology, slags
industry), Geology (petrology, geochemistry) and en-
gineering try to understand the characteristics of com-
plex materials by studying the interrelationship of com-
position, microstructure and process conditions repre-
sented in phase diagrams, whose computation is one of
the main objectives of computational thermodynamics.
In these fields of research the absolute amount of pure
components constituting a complex material is not very
important, while it is much more interesting to know
their relative amount. For example, pseudowollastonite
is always composed of 50% CaO and 50% S iO2 in mo-
lar proportions independently of the bulk amount of the
substance. A convenient way to describe the domain of
all the possible relative compositions is by using a sim-
plex, where each vertex corresponds to one of the pure
components. Thus, such a simplex is called the compo-
sitional simplex. For any molten substance, the temper-
ature of incipient crystallization changes depending on
the relative quantity of pure components. The function
that associates the incipient crystallization temperature
with each point of the compositional simplex is called
the liquidus. Since the dimension of the simplex is arbi-
trary (i.e. it depends on the number of pure components)
the liquidus is a hypersurface and, as such, can be repre-
sented piecewise-linearly through a simplicial complex
[22].

By starting at a given point in the compositional sim-
plex (i.e. a relative composition) it is possible to track
so-called descent lines representing the crystallization
induced by loss of heat toward the exterior or by com-
pression. At each point, the direction of such lines is
dictated by the lowering of freezing point equation [23].
Thus, by using this equation we may assign the correct
direction to each simplex of the liquidus, and then ex-
ploit the algorithm described here to predict the compo-
sition that will be generated when the process reaches
its stability point.

10

z
y

t

x

z

t

x

y

t

x
y

z

Figure 12: An example showing a path computed within a four-
dimensional domain. The function is defined as f (x, y, z, t) = (y −
x2)2 + (x− 1) + z + t. The domain is a unitary hypercube [−0.5, 0.5]×
[−0.5, 0.5]× [−0.5, 0.5]× [−0.5, 0.5], and the images depict four axis-
aligned 3D projections of the result. To better convey the result, edges
of the simplicial complex are not shown.

6. Conclusions and future work

This research shows that it is possible to efficiently
compute steepest descent paths on piecewise-linear
functions defined on Euclidean domains of any dimen-
sion. In practice, such functions are defined through a
finite sampling and the resulting discretization may lead
to flat simplices for which we have proposed an appro-
priate treatment. In some cases, a vector field may be
available instead of the function, and often such a field
determines the path’s direction at all the points; in these
cases, we have shown that our algorithm can be eas-
ily adapted to compute the paths according to the input
field, and have presented a practical application in the
area of Material Sciences.

As it is, however, the algorithm presented here has
some limitations that constitute the subject of our future
research. First, when the steepness is the same in more
than one direction at a given point our algorithm sim-
ply chooses one of the possibilities, whereas it would
be certainly useful to have a more comprehensive result
including possible branches and joins: the possibility
to have even infinite alternatives (eg. when the starting
point is within a flat simplex) makes this problem rather
challenging. An even more challenging direction for fu-
ture research is to consider higher-degree (i.e. non lin-
ear) functions to interpolate the samples, but this might

require a substantially different algorithm.

Acknowledgements. This work is partly supported by
the Italian MIUR-PRIN Project N. 2009B3SAFK
(Topology of phase diagrams and lines of descent) and
by the Petromaks program of the Norwegian Research
Council through the Geoillustrator project (N. 200512).
Thanks are due to the SMG members at IMATI for help-
ful discussions.

References

[1] H. Edelsbrunner, J. Harer, A. Zomorodian, Hierarchical morse
complexes for piecewise linear 2-manifolds, in: SCG ’01: Pro-
ceedings of the seventeenth annual symposium on Computa-
tional geometry, ACM, New York, NY, USA, 2001, pp. 70–79.

[2] H. Edelsbrunner, J. Harer, V. Natarajan, V. Pascucci, Morse-
smale complexes for piecewise linear 3-manifolds, in: SCG ’03:
Proceedings of the nineteenth annual symposium on Computa-
tional geometry, ACM, New York, NY, USA, 2003, pp. 361–
370.

[3] V. Natarajan, V. Pascucci, Volumetric data analysis using morse-
smale complexes, in: SMI ’05: Proceedings of the International
Conference on Shape Modeling and Applications 2005, IEEE
Computer Society, Washington, DC, USA, 2005, pp. 322–327.

[4] S. Takahashi, T. Ikeda, Y. Shinagawa, T. L. Kunii, M. Ueda,
Algorithms for extracting correct critical points and construct-
ing topological graphs from discrete geographic elevation data,
Computer Graphics Forum 14 (3) (1995) 181–192.

[5] C. Bajaj, D. Schikore, Topology preserving data simplification
with error bounds, Comput. Graph. 22 (1) (1998) 3–12.

[6] P. Bremer, V. Pascucci, A practical approach to two-dimensional
scalar topology, in: Topology-Based Methods in Visualization,
Springer, Berlin Heidelberg, Germany, 2007, pp. 151–169.

[7] P.-T. Bremer, H. Edelsbrunner, B. Hamann, V. Pascucci, A
multi-resolution data structure for two-dimensional morse func-
tions, in: VIS 03: Proceedings of the IEEE Visualization 2003,
IEEE Computer Society Press, Los Alamitos, CA, 2003, pp.
139–146.

[8] V. Pascucci, Topology diagrams of scalar fields in scientific vi-
sualization, in: Topological Data Structures for Surfaces, John
Wiley and Sons London, U.K., 2004, pp. 121–129.

[9] S. Dong, P.-T. Bremer, M. Garland, V. Pascucci, J. C. Hart,
Spectral surface quadrangulation, ACM Trans. Graph. 25 (3)
(2006) 1057–1066.

[10] X. Ni, M. Garland, J. C. Hart, Fair morse functions for extracting
the topological structure of a surface mesh (2004) 613–622.

[11] J. L. Helman, L. Hesselink, Representation and display of vector
field topology in fluid flow data sets, Computer 22 (8) (1989)
27–36.

[12] S. Biasotti, G. Patanè, M. Spagnuolo, B. Falcidieno, Analysis
and comparison of real functions on triangulated surfaces, Curve
and Surface Fitting Modern Methods in Mathematics (2007) 41–
50.

[13] S. Biasotti, G. Patanè, M. Spagnuolo, B. Falcidieno, G. Bare-
quet, Shape approximation by differential properties of scalar
functions, Computers and Graphics 34 (3) (2010) 252–262.

[14] M. Attene, D. Giorgi, M. Ferri, B. Falcidieno, On converting
sets of tetrahedra to combinatorial and PL manifolds, Computer-
Aided Geometric Design 26 (8) (2009) 850–864.

[15] L. C. Glaser, Geometrical Combinatorial Topology, Vol. 1, Van
Nostrand Reinhold, 450 West 33rd Street, New York, 1970.

11

[16] L. De Floriani, A. Hui, Data structures for simplicial complexes:
an analysis and a comparison, in: SGP ’05: Proceedings of the
third Eurographics symposium on Geometry processing, Euro-
graphics Association, Aire-la-Ville, Switzerland, Switzerland,
2005.

[17] S. Biasotti, L. De Floriani, B. Falcidieno, P. Frosini, D. Giorgi,
C. Landi, L. Papaleo, M. Spagnuolo, Describing shapes by
geometrical-topological properties of real functions, ACM
Comp. Surveys 40 (4) (2008) 12:1–12:87.

[18] H. Edelsbrunner, D. Morozov, V. Pascucci, Persistence-sensitive
simplification of functions on 2-manifolds, in: Procs. of Sympo-
sium on Computational Geometry, 2006, pp. 127–134.

[19] G. Patane, B. Falcidieno, Computing smooth approximations
of scalar functions with constraints, Computers and Graphics
33 (3) (2009) 399–413.

[20] M. Attene, A lightweight approach to repairing digitized poly-
gon meshes, The Visual Computer 26 (11) (2010) 1393–1406.

[21] G. Chen, K. Mischaikow, R. S. Laramee, P. Pilarczyk, E. Zhang,
Vector field editing and periodic orbit extraction using morse
decomposition, IEEE Trans. on Visualization and Computer
Graphics 13 (4) (2007) 769–786.

[22] M. Attene, G. Ottonello, Computational geometry meets mate-
rial science, ERCIM News 84 (2011) 43–44.

[23] G. Ottonello, Principles of Geochemistry, Columbia University
Press, N.Y., 1997.

12

