
Combinatorial 3-manifolds from sets of tetrahedra

Marco Attene
IMATI-GE

CNR
Italy

marco.attene@ge.imati.cnr.it

Massimo Ferri
Dept. of Mathematics
University of Bologna

Italy
ferri@dm.unibo.it

Daniela Giorgi
IMATI-GE

CNR
Italy

daniela.giorgi@ge.imati.cnr.it

Abstract

We propose an algorithm to convert a tetrahedral mesh
with singularities to a combinatorial 3-manifold using only
local modifications. We outline sufficient conditions on the
mesh to guarantee the feasibility of the approach and we
show how singularities can be both identified and removed
according to the configuration of their link. Furthermore,
we demonstrate that the algorithm can be implemented us-
ing a flexible state-of-the-art data structure for manifold
tetrahedral meshes suitable for efficient and general appli-
cations.

1 Introduction

Virtual 3D shapes are crucial in many sectors such as
industrial design, gaming, simulation and medicine, to cite
a few, and can be either conceived using computer-aided
tools, or reconstructed out of digitized real 3D objects. 3D
shapes can be modelled in several ways [23], though the
most common approach relies on the so-called Boundary
Representation (B-Rep), in which a solid is represented in-
directly as the volume bounded by a given, explicit surface.
B-Reps are particularly appropriate for both the designer
and the computer; NURBS, for example, make it possi-
ble for the designer to control the shape of smooth surface
patches through few control points, while, from the point of
view of the computer, triangle meshes are directly supported
by the graphic hardware for rendering complex shapes at
exceptional speeds.

Nevertheless, in some cases it is necessary to explicitly
model also the inner parts of the shape. Fully solid shape
models, for example, come directly from CT or MRI scans
in medicine. In this case, the volume is typically repre-
sented in raster form as the space being digitized is sub-
divided in a regular grid of voxels.

In other scenarios, a B-Rep may need to be converted
to a volumetric simplicial mesh (i.e. a tetrahedral mesh)

in order to apply physically-based simulation techniques.
In Computer Graphics, for example, realistic simulation
of deformable objects are based on volume meshes [26]
while, more in general, in computational sciences numer-
ical solvers for partial differential equations need a discrete
domain to apply finite-element or finite-volume methods.

The representation of simplicial meshes in a computer
has been widely studied, and a number of data structures
have been proposed in the literature [3, 5, 6, 9]. The most
efficient structures, however, can represent only manifold
meshes, hence a lot of research has been dedicated to
the conversion of generic simplicial meshes to more effi-
cient manifold meshes. Unfortunately, while state-of-the-
art solutions to convert surface meshes are satisfactory, for
higher-dimensions some more problems have been encoun-
tered [10].

1.1 Motivation

In medical applications, CT or MRI scans of the patient
generate raster 3D images in which the brightness of each
voxel is related to the type of tissue sampled in that position.
In several cases it is important to extract from the 3D image
the shape of a particular tissue (e.g. an organ or a bone).
This procedure, known as segmentation, may generate vol-
umetric simplicial meshes [2, 17], and their suitability for
specific kinds of analysis often requires them to be mani-
fold [11].

Similarly, recent variational meshing techniques [1] al-
low one to easily convert a surface mesh to a volume mesh
in which the placement of vertices in inner parts guaran-
tees both a smooth transition in sampling density and well-
shaped tetrahedra (these two conditions are fundamental for
an effective application of the finite-element method). Nev-
ertheless, such volumetric models are not guaranteed to be
manifold (see Figure 1), and this is a limitation in several
other applications where efficiency is mandatory.

On a data structure designed for manifold meshes specif-
ically, in fact, traversal operations are much faster, and this



Figure 1. A tetrahedral mesh obtained
through the variational meshing algorithm
described in [1] in which a singular vertex is
shown. Model courtesy of Pierre Alliez.

is fundamental to implement efficient algorithms to detect
collisions, to perform boolean or morphing operations, to
simplify the model, or even simply to render it efficiently.

Note that most data structures neatly separate the con-
nectivity of the mesh, which is an abstract simplicial com-
plex, from its geometry, which defines the position of each
vertex in the 3D space. Thus, since typical traversal opera-
tions are independent of the geometry, efficiency is granted
by the manifold condition on the abstract complex defining
the connectivity.

Hence, it is important to develop efficient approaches
to convert the connectivity of a volumetric simplicial mesh
into a manifold abstract complex.

1.2 Overview and contributions

In this paper an algorithm is proposed to process the
connectivity of a tetrahedral mesh so as to make it mani-
fold. Existing related work is described in section 2, where
both the most important state-of-the-art algorithms used to
process B-reps and the attempts done so far to treat higher
dimensional complexes are presented. The mathematical
background is then presented in section 3 and, based on this,

the problem tackled in the paper is stated formally. The ap-
proach is then described in section 4 both at a conceptual
level using a mathematical terminology, and at a practical
level using a more computer-driven language and pseudo-
code snippets. In section 5 we discuss some of the choices
made in the design of the algorithm and outline possible al-
ternative approaches. Finally, we draw our conclusions and
the directions of future research in section 6.

2 Related Work

Representations for non-manifold objects exist and are
useful in several contexts [16, 19, 22]. Nevertheless, the
need for efficient algorithms has called for the develop-
ment of data structures specifically dedicated to the man-
ifold case. Manifold simplicial complexes can be repre-
sented in any dimension [4, 24], although most data struc-
tures have been proposed specifically for the 2D and 3D
cases [5, 7, 15, 21, 23]. In several practical applications, it
happens that the simplicial complex resulting from a spe-
cific process (e.g. segmentation of a 3D image or digi-
tization of a real object) is mostly manifold, in the sense
that only a small percentage of vertices are singular. This
fact prompted the development of several algorithms that
slightly modify the complex to remove the singularities
without changing anything far from them. In this con-
text, a widely used approach consists of decomposing non-
manifold complexes into simpler parts, splitting at those
elements (vertices, edges, facets, etc.) where singularities
occur [8, 14, 25]. The result of such a decomposition is a
collection of singularity-free components that can be repre-
sented by standard data structures for manifold complexes.

2.1 Manifold surface meshes

Most of these works have been proposed for the case of
surface meshes. In [25], for example, a method is proposed
to convert a non-manifold set of triangles to a set of mani-
fold surface meshes by first identifying non-manifold edges
(i.e. edges having more than two incident faces); within
the data structure, each such edge is replicated a number
of times sufficient to assign at most two incident faces to
each copy. In a second step, non-manifold vertices are also
identified and duplicated properly.

In a similar setting, [14] identifies non-manifold edges
and cuts the surface along such edges, that is, each non-
manifold edge having k incident faces is turned into k
boundary edges having 1 incident face each. In a second
step, the user may choose whether to pinch or to snap such
boundary edges; in the former case, each boundary loop is
simply zipped, or closed, while in the latter case pairs of
neighboring boundary loops are merged together.



2.2 Manifold complexes in higher dimen-
sions

In [10], it has been pointed out that the decomposition
of a non-manifold complex should not introduce artificial
or arbitrary modifications to manifold parts. Under these
assumptions, a decomposition into manifold components is
possible, in general, only for two-dimensional complexes.
Therefore, instead of trying to obtain a set of manifold com-
ponents, the solution proposed in [10] converts a general
non-manifold complex to a set of so-called initial quasi-
manifolds. These objects are equivalent to actual manifolds
in dimension 2, while in higher dimensions they may con-
tain singular vertices (Figure 2). Thus, to efficiently work
with initial quasi manifolds, proper data structures are re-
quired in which the presence of such singularities do not
represent a drawback; in [18] such a data structure has
been proposed for the specific 3D case. Though initial
quasi-manifolds have several interesting characteristics, and
though they can be represented through proper data struc-
tures, the presence of singularities make them still not sat-
isfactory for a number of applications.

Figure 2. An example singular vertex in a 3D
initial quasi-manifold. On the right, a pair of
adjacent tets have been detached to better
show the singularity. In [10], this configura-
tion is called a pinched pie.

3 Background definitions

3.1 Simplicial complexes

A k-dimensional simplex, or k-simplex, Ak is a set
V = {v0, . . . , vk} of k + 1 objects called vertices, together
with the set of real-valued functions α : V → R satisfying∑

vi∈V α(vi) = 1 and α(vi) ≥ 0. A function α is called a
point of Ak. The values α(v0), . . . , α(vk) are the barycen-
tric coordinates of the point α [12].

A geometric realization |Ak| of Ak in the Euclidean
space Rn, n ≥ k, can be obtained by defining a bijec-
tion between the vertices of Ak and a set of k + 1 affinely
independent points p0, p1, . . . , pk of Rn, so that |Ak| =

{(t0p0 + t1p1 + . . . + tkpk) ∈ Rn | ti ≥ 0,
∑

i ti = 1}.
Thus, |Ak| is the convex hull of p0, . . . , pk. In particular,
the standard k-simplex ∆k is defined as the convex hull of
the points e0 = (1, 0, . . . , 0), e1 = (0, 1, 0, . . . , 0), . . .,
ek = (0, 0, . . . , 1) ∈ Rk+1.

A (proper) face B of Ak, denoted B < Ak, is a simplex
determined by the (proper) subset W ⊂ V , whose points
β : W → R are identified with the points α : V → R such
that α(vi) = β(vi) if vi ∈ W and α(vj) = 0 if vj ∈ V −W .
If B is a face of A, then A is said to be incident at B.

A finite simplicial complex K is a finite set of simplices
such that:

i) if A ∈ K and B < A, then B ∈ K;

ii) if A, B ∈ K, then A ∩ B is either empty or it is a face
of both A and B.

From now on, we shall omit the term finite.
The underlying space |K| of K is the union ∪A∈K |A| of

the geometric realization of its simplices.
The dimension of K is the dimension of the largest di-

mensional simplex belonging to K. A simplicial complex
of dimension n is homogeneous if it is made of n-simplices
and their faces.

L is a subcomplex of K if L is a complex and L ⊂ K.
For A ∈ K, the (closed) star of A in K, star(A,K), is the
subcomplex of K made of all simplices of K having A as
a face plus all their faces. If A ∈ K, then the link of A in
K, link(A,K), is the set of simplices in star(A,K) whose
intersection with A is empty.

The boundary ∂A of a simplex A is the complex made of
the proper faces of A. The boundary ∂K of a homogeneous
n-dimensional simplicial complex K is the (n−1)-complex
obtained as the sum mod 2 of the (n − 1)-dimensional
simplices of the boundary ∂A of each of the n-simplices
A ∈ K plus their faces [12].

3.2 Piecewise linear homeomorphisms

Let K and L be simplicial complexes whose sets of ver-
tices are denoted V (K) and V (L), respectively, and let
f : V (K) → V (L) be a bijection such that the ver-
tices v0, . . . , vp of K span a simplex of K if and only if
f(v0), . . . , f(vp) span a simplex of L. Then, f is said to be
a simplicial isomorphism and the induced map |f | : |K| →
|L|, taking v =

∑
i tivi to g(v) =

∑
i tif(vi), is called a

piecewise linear homeomorphism.
A complex L is a subdivision of the complex K if

|L| = |K| and every simplex of L lies in a simplex of K. A
map g : |K1| → |K2| is then a piecewise linear homeomor-
phism if and only if there exist subdivisions L1 of K1 and
L2 of K2 and a simplicial isomorphism f : L1 → L2 such



that g = |f |. |K1| and |K2| are said to be piecewise lin-
ear homeomorphic if there exists a piecewise linear home-
omorphism between them. For the sake of simplicity we
shall confuse, with a fairly usual abuse of language, every
K with |K|, f with |f |, and the notion of simplicial isomor-
phism with that of piecewise linear homeomorphism.

A combinatorial n-ball is a complex piecewise linearly
homeomorphic with the standard simplex ∆n. A combi-
natorial n-sphere is a complex piecewise linearly homeo-
morphic with the boundary ∂∆n+1 of the standard simplex
∆n+1.

3.3 Combinatorial n-manifolds

A combinatorial n-manifold is a homogeneous n-
dimensional complex K such that for any vertex v of K,
link(v,K) is a combinatorial (n− 1)-ball if v ∈ ∂K and a
combinatorial (n− 1)-sphere if v /∈ ∂K.

A simplex Ap ∈ K is regular in K, where K is a homo-
geneous n-dimensional complex, if link(Ap,K) is a com-
binatorial (n − p − 1)-ball if Ap ∈ ∂K and a combina-
torial (n − p − 1)-sphere if Ap /∈ ∂K; otherwise Ap is
called a singular simplex. It follows that a combinato-
rial n-manifold is a homogeneous complex in which every
vertex is regular. It also holds that in a combinatorial n-
manifold all simplices are regular [12].

4 Building combinatorial 3-manifolds

In this paper, we deal with three-dimensional simpli-
cial complexes. In this case, special names are given to
simplices depending on their dimension. Specifically, a 3-
simplex is called a tetrahedron, or simply tet, a 2-simplex
is a facet, a 1-simplex is an edge and a 0-simplex is a
vertex. We adopt the term tetrahedrization to indicate a
complex made of tetrahedra and their faces.

4.1 Problem statement

Le K be a homogeneous, possibly non manifold sub-
complex of a combinatorial 3-ball; without loss of general-
ity, we assume that K has no vertices on the boundary of
the ball. Our aim is to locally edit K so as to transform it
in a manifold complex. Editing operations must influence
the neighborhood of the singularities exclusively, while the
remaining parts of the complex must remain unmodified.
More in detail, supposing, without loss of generality, that
K has a single singular vertex (or edge) v, we shall obtain
a new complex K ′ that will be a combinatorial 3-manifold
coincident with K everywhere but star(v,K). Note that,
differently from [10], we allow the modification of some
manifold faces which are incident at singular elements.

It is possible to prove that the new complex K ′ can
be geometrically realized in the Euclidean space, so that
|K| ⊂ |K ′| or |K ′| ⊂ |K|. Since the aim of this paper
is to fix the connectivity of the complex, we will not inves-
tigate into these issues. We will limit ourselves to showing
a pseudo-realization of K ′ in |K|, that is we will indicate a
non-injective simplicial map from K ′ to K.

4.2 Approach

Roughly speaking, our approach consists of two phases:
first we identify and treat singular edges; in a second step,
we deal with the remaining vertex singularities adopting
two different procedures that depend on the configuration
of the link.

More formally, let L be a combinatorial 3-ball, and K
a homogeneous sub-complex of L with no vertices in ∂L.
The procedure we adopt to remove singularities located at
vertices requires that the link of each vertex has no singu-
larities. To achieve this condition, we treat singular edges
first as follows (refer to Figure 3 for an example showing a
step of the procedure).

Let e = {v1, v2} be a singular edge in K. Then
link(e,K) is a simplicial 1-complex made of k > 1 com-
ponents Li(e), with i = 1, . . . , k. We create k new ver-
tices wi, with i = 1, . . . , k, each positioned at the mid-
point of e. For each such vertex, we also create two new
edges ei

1 = {v1, wi} and ei
2 = {wi, v2}. Now, for each

edge li,j = {ui,j
1 , ui,j

2 } in Li(e), with i = 1, . . . , k, we
consider the tet ti,j having both li,j and e as faces, and re-
place it with two new tets ti,j1 = {v1, wi, u

i,j
1 , ui,j

2 } and
ti,j2 = {wi, v2, u

i,j
1 , ui,j

2 }. After these operations, the orig-
inal singular edge e has no remaining incident tets and is
removed from the complex.

In the new complex obtained by applying this procedure
to all the singular edges, that we still call K, all the newly
created wis are regular and all the singular vertices have a
manifold link.

Each remaining singular vertex v in K can then be
treated as follows.

By hypothesis, link(v, L) is a combinatorial 2-sphere
while link(v,K) is neither a combinatorial 2-sphere, nor a
combinatorial 2-ball. Since link(v,K) is a sub-complex of
link(v, L), link(v,K) is the disjoint union of n ≥ 1 com-
binatorial 2-spheres with holes. The boundary ∂link(v,K)
of link(v,K) is made up of k > 1 components, each of
which is a combinatorial 1-sphere.

We proceed recursively with respect to k.
Among the combinatorial 1-spheres bounding

link(v,K), at least one of them, let it be C, bounds
a 2-ball D of either link(v,K) or link(v, L − K) (note
that in our setting the Schoenflies conjecture holds [13]).



Figure 3. An example of singular edge e in which one of the components (L3(e)) of its link is con-
sidered for the creation of a new vertex w3 and its incident elements. The algorithm places the new
vertex w3 at the midpoint of the singular edge e; in the figure, however, it is depicted in a displaced
position to better illustrate the resulting connectivity.

We add a new vertex w in K at the same position as v,
and distinguish two possible cases:

i. If D ⊂ link(v,K), we replace each tet ti incident at v
and having a face in D with a tet τi obtained from ti
by substituting v with w (Figure 4).

ii. If D ⊂ link(v, L − K), we consider the facets fi in-
cident at v and having an edge in C and, for each of
them, we add a new tet τi made of w and the vertices
of fi (Figure 5).

Now, the new vertex w is clearly regular, while the
boundary ∂link(v,K) is made of k − 1 components, each
of which is a combinatorial 1-sphere. Hence, we repeat
the procedure as long as the number of components in
∂link(v,K) is greater than 1.

In this way, we obtain a new complex K ′ in which all
simplices are regular, that is a combinatorial 3-manifold.

Notice that, for simplicity, the new vertices w are as-
signed the same coordinates of the singular vertex v in the
Euclidean space. This implies that our method does not pro-
duce a geometric realization of K in the Euclidean space.

Figure 4. Vertex duplication and retriangula-
tion of a configuration having two connected
components in the link of an isolated singu-
lar vertex. The algorithm places the new ver-
tex at the same position of the former singu-
larity; in the figure, however, it is depicted in
a displaced position to better illustrate the re-
sulting connectivity.

Actually, what happens is that a map f : V (K ′) → V (K)
induces a simplicial map which is not injective.



Figure 5. Conversion of a pinched pie config-
uration to a combinatorial 3-ball. The algo-
rithm places the new vertex at the same po-
sition of the former singularity; in the figure,
however, it is depicted in a displaced position
to better illustrate the resulting connectivity.

4.3 Algorithm

We have implemented the algorithm based on the tetra-
hedral data structure introduced in [5]. Within such a struc-
ture, the four basic entities of a tetrahedrization (i.e. ver-
tices, edges, facets and tets) are encoded, while only a min-
imal set of topological relations are stored explicitly. Topo-
logical relations describe the connectivity of the complex
by linking each simplex to its boundary and co-boundary,
that is, the set of its faces and the set of its incident simplices
respectively.

For compactness, the tetrahedral data structure explicitly
encodes only the following four constant relations, each of
which links an element with a constant number of neighbor-
ing entities:

• tet-facet (TF) which returns the four facets bounding
a tetrahedron;

• facet-tet (FT) which returns the tets (one or two) inci-
dent at a facet;

• facet-edge (FE) which returns the three edges bound-
ing a facet;

• edge-vertex (EV) which returns the two vertices of an
edge;

and the following two special relations, each of which
links an element with only one of the neighboring entities:

• edge-facet (EF*) which returns one of the facets inci-
dent at an edge;

• vertex-edge (VE*) which returns one of the edges in-
cident at a vertex.

Provided that the tetrahedrization encoded is combinato-
rially manifold, from this minimal set it is possible to com-
pute all the other topological relations in optimal time (i.e.

in a number of operations linearly proportional to the num-
ber of elements involved in the relation being computed).
We point the reader to [5] for a detailed description of the
algorithms that compute these implicit relations.

Note that, if the tetrahedrization T is a sub-complex of a
combinatorial ball, each facet can have at least one, and at
most two incident tets; in this case, even if T is not a combi-
natorial manifold, it can be encoded by the tetrahedral data
structure and all the constant relations can be still computed
in optimal time.

The presence of singularities, however, does not allow to
extract all the other relations in optimal time. Therefore, to
keep the complexity of the conversion algorithm linear, we
pre-compute the link of all the vertices and edges as follows.

Each vertex v is assigned an additional relation L(v), ini-
tially empty, that encodes its link. Note that, since such
a link is a homogeneous simplicial 2-complex, L needs
to explicitly store only the facets; all the other lower-
dimensional elements of the link are faces of such facets and
can be extracted through the FE and EV relations. Then,
for each tet t in the tetrahedrization we consider its four
facets, and add each such facet to the link L of its oppo-
site vertex in t. This procedure is sketched in the pseudo-
code of Listing 1, where the constant relation FV return-
ing the vertices of a facet is obtained as the combination
FV (f) = EV (FE(f)), and the constant relation TV re-
turning the vertices of a tet is obtained as the combination
TV (t) = FV (TF (t)).

The star of v can be computed starting from L(v) in opti-
mal time through the FT relation.

Listing 1. Construction of the links of all the
vertices

CreateVertexLinks(Tetrahedrization T)
{
for each vertex v in T
L(v) := new empty facet list

for each tet t in T
for each facet f in TF (t)
{
v := the vertex of TV (t) which is not in FV (f)
Add f to L(v)
}

}

Similarly, each edge e is assigned an additional relation
L(e) that encodes the edges constituting its link, which is a
homogeneous simplicial 1-complex. Thus, for each tet t in
the tetrahedrization we consider its six edges, and add each
such edge to the link L(e) of its opposite edge e in t.

Unfortunately, the star of e cannot be computed starting



from L(e) in optimal time. Hence, during the computation
of L(e), we also fill a further relation T(e) with the tets t
used to build L(e) (i.e. the tets incedent at e that, together
with their faces, constitute the star of e).

The procedure to compute the links and the stars of all
the edges is sketched in Listing 2, where the relation TE is
computed as the composition of FE and TF.

Listing 2. Construction of the links and the
stars of all the edges

CreateEdgeLinksAndStars(Tetrahedrization T)
{
for each edge e in T
{
L(e) := new empty edge list()
T (e) := new empty tet list()
}

for each tet t in T
for each edge e in TE(t)
{
e2 := the edge in TE(t) sharing no vertex with e
Add e to L(e2) and t to T (e2)
}

}

Afterwards, the link L(e) of each edge is analyzed, and if
it is not connected e is declared to be a singular edge.

In this case, one component of the link remains as it is,
while for each additional component Li(e) of L(e) a copy ei

of e is created, and the following topological relations are
updated in the data structure:

• EV(ei) := EV(e)

• for each tet t in T (e) having an edge in Li(e), and for
each facet f of t such that FE(f ) contains e, replace e
with ei in FE(f ). Take one of these facets as the value
of EF*(ei)

Finally, e and the eis are split at their midpoints to elim-
inate duplicated edges in the structure, and the L and T
structures are updated accordingly for all the elements in-
volved in the modification.

At this stage, we are guaranteed that the link of each ver-
tex is a combinatorial 2-manifold with some boundaries and
possibly more than one connected component.

In particular, if the link L(v) of v has more than one
boundary component, then v is declared to be singular. In
this case, the algorithm proceeds as described in Listing 3.

Once such algorithm terminates, the data structure repre-
sents a combinatorial 3-manifold, thus the L and T relations
can be deleted, and all the topological relations can now be
extracted in optimal time.

Since the tetrahedral data structure is suitable for a wide
spectrum of applications, it is worth to implement the con-
version algorithm directly on such a structure. Note that the
use of this structure has no effects on the overall complex-
ity of the algorithm; all the operations needed to perform
the conversion, in fact, can be executed in optimal time.

5 Discussion

Our method assumes that the input mesh is a homoge-
neous subcomplex of a combinatorial ball. Note that this
condition is not too restrictive. In medicine, for exam-
ple, segmented 3D images can generate tetrahedral meshes
by simply triangulating the voxels; though not necessarily
manifold, the resulting mesh is clearly a subcomplex of a
combinatorial ball (i.e. the fully tetrahedrized 3D image).
Also, our algorithm is applicable to the tetrahedrizations
produced by popular meshing methods (e.g. [1]) based on
a constrained Delaunay tetrahedrization of the input’s con-
vex hull.

The approach we have chosen is inspired by existing
methods for surface meshes. In the case of surfaces, how-
ever, all the isolated singular vertices can be treated using
the same scheme [25]. Conversely, for tetrahedral meshes
we need to use different procedures depending on the con-
figuration of the link of each singularity, and each such pro-
cedure has a different impact on the type of connectivity of
the mesh.

Specifically, to treat a singular vertex we need to analyze
its link and recursively apply a proper procedure to each
component of the link. If the component is a combinatorial
2-ball we duplicate the singular vertex by changing the type
of connectivity of its star (i.e. its fundamental group); other-
wise, if the component is a 2-ball with n holes, we emboss
the singularity n times without modifying the fundamental
group of its star. These two strategies, namely i. and ii. in
section 4.2, are illustrated in Figure 4 and Figure 5 respec-
tively.

Though the modification of the fundamental group deriv-
ing from our approach is suitable for most real-world prac-
tical applications, alternative solutions can be implemented.
For example, the two combinatorial cones depicted in Fig-
ure 4 can be merged together instead of being separated;
similarly, the pinched pie configuration in Figure 5 can be
converted to a solid torus instead of becoming a ball. The
difference between the results of these approaches can be
seen in the real-world example illustrated in Figure 6.

Note that the same arguments have been dealt with for
the case of surface meshes in [14], where surface patches
connected through singular points can be either separated
or regularly merged.



Listing 3. Conversion algorithm

EditSingularVertex(Vertex v)
{
1. Look for a connected component in L(v) which is a combinatorial 2-ball
2. if there is such a component, let it be D
3. Compute the set T of tets incident at v and having a facet in D
4. Create a new vertex w
5. Remove all the tets in T from the tetrahedrization

6. Create a new tet {w,wi
1,wi

2,wi
3} for each facet {wi

1,wi
2,wi

3} in D
7. Remove D from L(v)
8. If L(v) has more than one component go to 1, else go to 15
9. else (i.e. if there are no combinatorial 2-balls in L(v))
10. Extract a boundary loop B of L(v)
11. Compute the set D of facets incident at v and having an edge in B
12. Create a new vertex w

13. Create a new tet {w,wi
1,wi

2,v} for each facet {wi
1,wi

2,v} in D

14. Add all the facets {w,wi
1,wi

2} to L(v)
15. If L(v) has more than one boundary component go to 10, else terminate
}

Figure 6. Through our approach, a tetrahedral mesh resulting from a segmentation of a medical
image (left) is converted to a combinatorial manifold. Its boundary has been subdivided twice us-
ing Loop’s scheme [20] (right) to show the resulting connectivity around formerly singular vertices
(magnified). An additional magnification shows the result of the same part subdivided after being
processed by the alternative approaches discussed in section 5.

6 Conclusions and Future Research

We have shown that, under specific conditions, a tetrahe-
dral mesh with singularities can be converted to a combina-
torial 3-manifold by using only local modifications. Based
on well-established mathematical concepts, we have out-
lined sufficient conditions that make such a conversion pos-
sible, and developed a novel conversion algorithm. More-
over, we have shown that the algorithm can be implemented
on a data structure designed for manifold complexes; in this
way, the algorithm can be implemented as part of more gen-

eral applications dealing with manifold tet meshes without
the need of introducing additional structures.

In future work, we wish to extend the approach so that,
besides reaching the manifoldness in a combinatorial sense,
it also guarantees the manifoldness of the underlying space
of the complex.
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