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Abstract
Given a 3D solid model S represented by a tetrahedral mesh, we describe a novel algorithm to compute a hierarchy
of convex polyhedra that tightly enclose S. The hierarchy can be browsed at interactive speed on a modern PC
and it is useful for implementing an intuitive feature selection paradigm for 3D editing environments.
Convex parts often coincide with perceptually relevant shape components and, for their identification, existing
methods rely on the boundary surface only. In contrast, we show that the notion of part concavity can be expressed
and implemented more intuitively and efficiently by exploiting a tetrahedrization of the shape volume.
The method proposed is completely automatic, and generates a tree of convex polyhedra in which the root is the
convex hull of the whole shape, and the leaves are the tetrahedra of the input mesh. The algorithm proceeds bottom-
up by hierarchically clustering tetrahedra into nearly convex aggregations, and the whole process is significantly
fast. We prove that, in the average case, for a mesh of n tetrahedra O(n log2 n) operations are sufficient to compute
the whole tree.

1. Introduction

In the last decade, 3D content creation crossed the bound-
aries of specialized computer graphics sectors and is now
presented to users that do not have expertise in sophisticated
modeling techniques. Meshes and easy-to-use editing oper-
ators are key ingredients to support emerging shape mod-
eling systems based on the so-called modeling by composi-
tion paradigm. In these systems it is possible to pick existing
models from a repository and to interact with them by select-
ing and detaching portions of interest to compose a new ob-
ject [FKS∗04]. Hence the call for intuitive mechanisms for
selecting regions of interest that can actively involve even
non-expert users in the creation and re-use of 3D content.

Intuitiveness of part selection can be supported by organiz-
ing the object shape in a hierarchy of convex parts. Convex
decompositions play a crucial role in shape perception and
are correlated with the so-called "minima rule" that states
that humans tend to perceive a shape as a composition of
parts separated through lines of minimum curvature [HR84].
Hierarchical decompositions are also needed to provide the
users with a view of the shape that reflects the level of detail
of the various parts. Not by chance, recent approaches tend

to decompose the shape in parts that conform to the concept
of convexity [LA07, KJS07, CS07, KT03].

Though the notion of convex component is intrinsically re-
lated to volumes, existing approaches to convex decomposi-
tion have been developed for surface meshes [KJS07,LA07].
Instead, describing solid objects explicitly by tetrahedral
meshes (or, for short, tet meshes) has a number of advan-
tages when the object is being analyzed (section 3.1) and
edited (section 4.2); moreover, some useful characteristics
(i.e. number of cavities, local feature size, ...) can be com-
puted much more easily if the shape is represented through a
tet mesh. Producing accurate tet meshes has been a difficult
issue for a long time, but recent advances in mesh gener-
ation [ACSYD05, SG05] make it possible to convert tradi-
tional surface meshes to tetrahedral meshes, even if the in-
put is particularly complex. Moreover, the extra-complexity
introduced by the representation of the "inner parts" is no
longer an issue, as modern computers have enough resources
to manage such information.

Summarizing, convex-based decomposition and hierarchi-
cal shape representation can provide a valid support to intu-
itive selection systems, and in this paper we propose a novel
paradigm that couples all these aspects through an original
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use of tetrahedral meshes. The main contributions of the pa-
per are the following:

• A formal, intuitive and effective definition of concavity
for volumetric parts (section 3.1);

• A hierarchical shape representation in terms of convex ap-
proximations, along with an efficient, easy to be imple-
mented and completely automatic algorithm to convert a
tetrahedral mesh to its hierarchical representation (section
3.2);

• A novel interaction paradigm to select regions of interest
to be processed (section 4).

Through our hierarchical representation (Figure 1) users
may easily select 3D regions which have a visually salient
shape, independently of the scale; in their turn, the features
selected can be deformed, edited or composed within ex-
tremely user-friendly interaction paradigms.

2. Related Work

We analyze related works according to the three main con-
tributions of the paper (new definition of concavity for vol-
ume meshes; hierarchical approximation algorithm; interac-
tive selection mechanism). Note that, even if our hierarchical
approximation induces a segmentation of the shape, shape
segmentation is not the main focus of this work. For recent
surveys on this topic we point the reader to [Sha06,APP∗07].

Part concavity - Convex regions of "natural" shapes, such
as human bodies, animals or proteins, are captured by di-
rect or indirect applications of the minima rule. Direct meth-
ods such as [KT03, KT05, ZL05] use geodesic distances
to guide the segmentation, and negative curvature is taken
into account to define the boundaries of the segments. Indi-
rect approaches look for convex regions that, in their turn,
are typically separated by curves placed in negative cur-
vature areas. An example of such a method is presented
in [CDST95], where the authors prove that computing an
exact convex decomposition is NP-hard. This intrinsic dif-
ficulty motivated the algorithm presented in [LA07], where
the surface is decomposed in just "approximately convex"
regions through a top-down approach: after having estab-
lished the concavity of a part (i.e. the maximum distance
from its convex hull), the algorithm decomposes it if such
a concavity exceeds a given threshold. Similar results are
achieved in [KJS07], where surface meshes are segmented
in nearly convex patches through a variational approach that
minimizes the overall concavity of the patches, but in this
case the concavity has been defined as the average distance
of the region from its convex hull. In their work, the au-
thors recommend to bias this metric with additional factors
to force patch compactness and to compensate for boundary
jaggedness.

Hierarchical clustering - The clustering approach our al-
gorithm is based on is an extension of the hierarchical face

clustering (HFC) described in [GWH01] for triangle meshes.
The basic idea in the HFC approach is to merge neighboring
triangles into representative clusters; A cluster is a connected
set of triangles, not necessarily simply connected, with some
properties that justify their aggregation. In [GWH01], for ex-
ample, clusters have the property that their triangles can be
effectively approximated by fitting planes computed through
principal component analysis, and the cost of merging a set
of triangles into a single representative cluster is the integral
L2 distance of its vertices from the fitting plane. By defining
the cost as the minimum of the L2 distances of the vertices
from a set of fitting primitives, in [AFS06] the hierarchical
clustering is used to extract useful features from CAD mod-
els.

Region selection - In an easy-to-use 3D modeling system,
users should be able to specify the desired selections even
without prior expertise (intuitiveness) and with a minimal
amout of interaction and system latency (efficiency); also,
the modeler should provide all the means to quickly specify
all the selections the user can think of (flexibility). Though a
number of segmentation methods [Sha06, APP∗07] can be
used to derive selections, this approach is not really effi-
cient and flexible (to define a single region the whole shape
needs to be segmented with proper parameters). More flexi-
bility can be achieved by combining the results from several
segmentations [ARSF07], but this is even less efficient and
not always intuitive. Defining regions of interest by draw-
ing their bounding curves would be definitely more intu-
itive, but unfortunately in 3D this operation involves a num-
ber of problems such as rotating the scene, and zooming
in and out to show the portions of the surface to draw on:
this class includes some systems that allow the user to select
a sequence of vertices on the surface mesh and cut along
the shortest paths between them [ZSH00], and other sys-
tems that allow the user to just roughly sketch some cutting
lines which are automatically aligned to the closest seams
of the surface [LL02]. Finally, some approaches try to min-
imize the human interaction by completing easily sketch-
able strokes [FKS∗04]; nevertheless, when the feature to be
selected is bounded by several curves or contains cavities,
these approaches still require a lot of human intervention.

The results described in this paper can be used to design a
system in which the selection of regions is both efficient and
intuitive thanks to the underlying hierarchical representation
of the shape.

3. Hierarchical Convex Approximation

Having convex parts organized in a hierarchical structure is
important to realize user-friendly and effective systems for
region selection. Therefore, we target the creation of a hi-
erarchy that contains virtually all the convex features of the
shape at all the scales, and that can be browsed by the user
to find "interesting" features. Also, we argue that the con-
version of an existing shape to such a hierarchical represen-
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Figure 1: A hierarchy of approximating convex polyhedra for the Neptune model (courtesy of AIM@SHAPE’s Shape Reposi-
tory) produced by our algorithm. On the right, the hierarchy was used to interactively select and deform a feature.

tation should be fast and fully automatic, so that it can be
transparently included in the loading stage. Hence, we have
implemented an efficient algorithm that takes a tetrahedral
mesh as input and computes a hierarchical convex approxi-
mation. Our algorithm is an extension of the HFC approach
to tet meshes where the cost is a measure of the concavity
of the cluster being created. In other words, the algorithm
strives to merge tetrahedra so that the resulting clusters are as
convex as possible. At any point of the algorithm, the clus-
ters can be approximated by their convex hulls to obtain a
simplified representation of the shape (Figure 1).

3.1. Definition of Concavity for solid models

As pointed out in [LA07], few methods have been proposed
to measure the concavity of polygons [LA06] while for poly-
hedra no standard definition exists, and recent works use ei-
ther the maximum [LA07] or the average [KJS07] distance
from the convex hull. In the variational partitioning proposed
in [KJS07], biasing the distance from the convex hull with
additional factors is necessary to keep the surface patches
compact and bounded by smooth lines. The importance of
a bias term can be seen in the example of an egg broken
in two pieces; the surface patch representing each piece has
null distance from its convex hull, and this does not depend
on the jaggedness of the patch’s boundary (Fig. 2(a)). Thus,
if smoother boundaries (Fig. 2(b)) are preferred, the distance
from the convex hull must be biased. If we model the egg as
a full solid (e.g. through a tet mesh), each of the two solid
pieces is bounded by a closed surface (Fig. 2(c)), and its dis-
tance from the convex hull would be zero only if such bound-
ing surface is convex. In other words, the sole minimization
of the distance from the convex hull becomes sufficient to
avoid too jagged connections between adjacent regions.

These considerations made us choose to represent the
shape using a tetrahedral mesh instead of traditional surface

Figure 2: An egg partitioned in two parts according to (a)
the non-biased concavity measure described in [KJS07] and
(b)(c) the volume-based concavity used here.

meshes. In this setting, if S is a solid polyhedron an intuitive
notion of concavity can be simply expressed as follows:

Concavity(S) = Volume(conv(S))−Volume(S) (1)

where conv(S) denotes the convex hull of S.

Note that this expression is invariant under rigid transforma-
tions, but not under scaling. In order to achieve invariance
under scaling, the notion of concavity could have been de-
fined as the volume of the convex hull divided by the volume
of the patch; this is the approach followed in [LCWK07] to
find bounding ellipsoids in a variational setting. In our hier-
archical framework, however, the proportionality of the con-
cavity measure with the size is to be considered a positive
aspect, as small shape features are expected to be merged as
the clustering proceeds, even if they are nearly convex. In a
human body, for example, fingers may be convex, but we do
not want them to remain up to the coarsest segmentation; on
the contrary, we would like that, at some point in the hierar-
chy, they are merged together with the palm to form a whole
hand that can be processed as a single entity (Fig. 6).
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3.2. Hierarchical Tet Clustering

Hereafter the hierarchical tet clustering (HTC) algorithm is
described in detail, whereas it is assumed that concepts such
as simplicial complexes and geometric graphs are familiar to
the reader.

Let T be the set of tetrahedra of a manifold tetrahedral mesh
M with boundary. The dual graph D = (N,A) of M is defined
as follows: each node of N corresponds to a tetrahedron of T ,
and there is an arc (dual edge) in A connecting two nodes in
N if the corresponding tetrahedra in M share a facet. Now, if
one considers each node of such a dual graph to represent a
cluster (initially made of a single tetrahedron), merging two
tetrahedra into a single representative cluster corresponds to
contracting a dual edge into a single node, that is, the two
nodes of the arc are identified and the adjacency relations
are updated accordingly in the data structure (Figure 3). In
the HTC approach, a priority queue is created in which all
the dual edges are sorted based on the cost of their contrac-
tion. At each step, the dual edge with lowest cost is popped
from the queue, it is contracted, and all the edges incident to
the new representative node are updated, that is, their cost is
re-computed and their position in the queue is updated ac-
cordingly. The method produces a hierarchy which can be
represented by a binary tree of clusters in which the root is
the whole tetrahedrization, and the leaves are the individual
tetrahedra.

Figure 3: A diamond-like shape modeled by a tetrahedral
mesh. In (b) an arc of the dual graph was contracted, and the
two tets corresponding to the arc end-points were marked as
belonging to the same single cluster. In (c) another arc was
contracted producing a resulting cluster made of three tets.

The algorithm can be described by the pseudo-code in List-
ing 1, where we make use of an extended notion of con-
cavity (Eqn. 1) referred to dual edges, and call Concavity(e)
the quantity Concavity(S1∪S2), where S1 and S2 are the two
clusters connected by the dual edge e. We remark that a clus-
ter is the union of original tets, and not the approximating
convex hull.

3.2.1. Tree Balancing

Clearly, Concavity(S) is zero when S is perfectly convex,
thus the use of such metric to sort the heap typically leads

to several cases in which an arbitrary choice must be made
between two dual edges of equal null cost. Instead of leaving
the choice to the fate, we introduced an additional criterion
that aims at keeping the resulting tree more balanced, with
significant benefits both in terms of quality of the segmenta-
tion hierarchy (clusters are kept more compact) and in terms
of computation time required to terminate. Specifically, in
these ambiguous cases we prefer to merge clusters that are
small and possibly of equal size (in terms of the number of
tetrahedra that constitute them). Thus, we introduce a sec-
ondary cost term defined as follows:

C2(e) =
t2
1e + t2

2e
T 2 (2)

where t1e and t2e are the number of tetrahedra constituting
the clusters being merged through the contraction of e, while
T is the total number of tetrahedra in the mesh. Since 0 ≤
C2 ≤ 1, we can combine the concavity with this secondary
cost without overlap as follows:

Cost(e) =


Concavity(e)+1, if Concavity(e) > 0

C2(e), otherwise
(3)

Note that the combined cost defined in Eqn. 3 does not im-
pose any trade off between different requirements; the inclu-
sion of C2 is just a way of driving the selection of one of the
possible orderings induced by the sole Concavity.

3.2.2. Complexity Analysis

After having run our HTC on more than 400 shapes, we have
verified that the resulting binary trees are mostly balanced,
hence we consider this as the average case and briefly ana-
lyze the algorithmic complexity of our clustering algorithm.
For the sake of simplicity, we assume that the total number
of tetrahedra is a power of 2, so that we can model the whole
set of operations through a perfectly balanced binary tree.

Hereafter, we call t the total number of tetrahedra of the
mesh being segmented, and e the number of dual edges.
Also, we note that each tetrahedron can correspond to at
most 4 dual edges, therefore the total number of dual edges
e is bounded by 4t or, equivalently, O(e) = O(t). To count
the number of operations needed to construct it, we scan
the hierarchy level by level from the leaves (level n in the
tree) to the root (level 1). To construct level n− 1 we need
to compute the concavity of e potential clusters made of 21

tetrahedra each; For level n−2, we need to compute the con-
cavity of e/2 potential clusters made of 22 tetrahedra each;
and so on. In general, to compute level n− i we need to
compute e/(2i−1) potential clusters made of 2i tetrahedra
each. The computation of the concavity is dominated by the
computation of the convex hull which, for n points in 3D,
costs O(nlogn) operations [PH77]. Moreover, by construc-
tion, each cluster made of 2i tetrahedra can have at most
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Listing 1: basic Hierarchical Tet Clustering algorithm

HTC ( TetMesh T )
{
1) Create a dual vertex and a corresponding singleton cluster for each tetrahedron in T
2) Create a dual edge for each pair of tetrahedra sharing a facet
3) Associate a cost to each dual edge e /∗Cost = Concavity(e)∗/

4) Create a heap of all the dual edges sorted based on their associated cost
5) If the heap is empty terminate
6) pop the first edge from the heap (let it be e)
7) Contract e to a single dual vertex v and merge the corresponding clusters
8) Update the cost of all the edges incident to v and update their position in the heap
9) Go to 5
}

2i + 3 vertices, and computing the convex hull of 2i + 3
points costs O(2ilog2i) = O(i2i) operations. Hence, the to-
tal number of operations needed to construct the hierarchy is
proportional to:

n−1

∑
i=1

e
2i−1 2ii = 2e

n−1

∑
i=1

i = 2e
n(n−1)

2
(4)

By considering that e belongs to O(t), and that t = 2n, the
above expression can be re-written as a function of the num-
ber of tetrahedra t as follows:

2e
n(n−1)

2
∈ O(en2) = O(2nn2) = O(tlog2t) (5)

The above theoretical complexity reasonably matches the
actual time required by our implementation to terminate on
various examples (see Figure 10). With a similar analysis it
can be proved that the complexity in the worst case (i.e. a
completely unbalanced tree) becomes O(t3logt).

3.2.3. Tree Pruning

Hierarchical clustering is a well-known technique for data
mining, and is particularly useful when large sets of data
have to be classified within an unspecified number of cate-
gories. Once the hierarchy is computed, it is often necessary
to analyze it to produce a static, single-resolution partition-
ing of the dataset. One may choose to select a fixed number
of clusters and stop the aggregation when such a number is
reached, but this would be somehow against the philosophy
of using a hierarchical setting, in which no preferred num-
ber of clusters exists; moreover, in these cases proper parti-
tioners such as the k-means would probably perform a better
job. Another solution is to select a maximum admissible cost
and stop the algorithm when the next aggregation would ex-
ceed such a threshold error. This solution is widely used, but
it relies on the assumption that the aggregation cost grows
monotonically as the clustering proceeds; in this case, the
resulting tree can be drawn within a coordinate frame so that

the height of each node (i.e. its y coordinate) corresponds to
the cost of aggregating its sub-clusters. Such a diagram, also
called dendrogram, can be cut through a horizontal line at
the desired height to produce a single-resolution partitioning
(see Figure 5).

In our HTC algorithm the cost is not necessarily monotonic.
Consider a 2D example in which an equilateral triangle t
is composed of three sub-triangles t1, t2 and t3 meeting at
the barycentre of t (see Figure 4). In this case, the leaves of
the binary tree represent the three sub-triangles ti that, hav-
ing a null approximation error (they are convex), would have
y = 0. The first aggregation performed necessarily involves a
pair < ti, t j > which forms a non-convex shape (non-zero ap-
proximation error), thus the corresponding node would have
y > 0. The root of the tree represents the whole shape that,
being a triangle, has again a null approximation error.

Figure 4: Effect of the pruning on the tree created out of a
simple shape.

This behaviour reveals that the tree may contain spurious in-
formation which, instead of depending on the intrinsic struc-
ture of the data, is due to the greedy and binary nature of the
algorithm used. This suggested us to look for methods to
prune the binary trees so as to turn them to dendrograms.
The method we have implemented starts from the root of
the tree and recursively removes children having a bigger or
equal cost, as described in the pseudo-code in Listing 2.

Notice that the output of this conversion algorithm is not
necessarily a binary tree, but it better captures the underly-
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ing structure of the set of tetrahedra being clustered. In the
extreme case in which the initial shape is perfectly convex
(and in this case only) the pruned tree may link all the leaves
directly with the root.

Figure 5: Form left to right: the original "screwdriver"
model (courtesy of AIM@SHAPE’s Shape Repository) and
three approximations computed by our algorithm after hav-
ing cut the dendrogram.

4. Interactive Region Selection and Applications

Clearly, our HTC generates a hierarchy of convex hulls that
can be used to improve the performances of point loca-
tion, proximity query and collision detection algorithms; the
exploitation of bounding volume hierarchies in these con-
texts is described in [JTT01], while the particular benefits
of using salient and convex decompositions are shown in
[LWTH01,EL01]. Nonetheless, in our method parts are both
salient and hierarchically structured, and this made us focus
our experiments on the more promising scenario of shape
editing. Thus, we describe how to exploit the hierarchy of
convex polyhedra to select 3D features through an extremely
simple and intuitive interaction. The cost that we plugged
into the HTC algorithm, as well as the greedy and incremen-
tal nature of the algorithm itself, makes the resulting hierar-
chies contain virtually all the relevant convex features of the
shape at all the scales. Thus, by browsing the hierarchy, it is
likely that a user finds several "interesting" features.

Based on this premise, we have developed a novel interac-
tion mechanism to select a convex part by simply clicking on
a point of the shape’s boundary, and by rotating the mouse
wheel to select the size of the convex feature containing the
point clicked. The computation of the hierarchy of convex
polyhedra is performed once as a pre-processing step. Then,
a mouse click on a point of the shape causes the selection
of the tetrahedron containing the point clicked. Such a tetra-
hedron corresponds to a leaf of the cluster tree, and the ro-
tation of the mouse wheel causes a motion upwards/down-
wards along the path connecting the selected leaf to the root
of the tree. The nodes along this path correspond to clusters
in the hierarchy; in particular, the path represents a sequence

of clusters approximated by convex polyhedra of increasing
size, with the property that each cluster properly contains its
predecessor in the sequence.

In a human body model, for example, the user may click on
a finger tip and rotate the mouse wheel to select among the
finger tip itself, the whole finger, the hand, the arm and so
on, up to the whole body (see Figure 6).

Figure 6: Interactive selection of meaningful features on a
human body. To browse these selections, the user must sim-
ply click on the finger tip and rotate the mouse wheel.

Note that the boundary of a selection may be slightly jagged
due to its alignment with the tets (Fig. 2 (b) and (c)). Nor-
mally, this can be considered as a sort of aliasing effect, and
it can be ignored in applications such as deformation. How-
ever, if perfectly smooth boundaries are required, existing
approaches may be used to "rectify" their curves on the sur-
face [GFA04, LL02].

4.1. Deforming Shape Features

The deformation of free-form shapes, typically represented
by surface meshes, is gaining more and more attention and
several approaches to this problem have been proposed re-
cently. In some cases, for example to animate virtual char-
acters, skeleton-based skinning is particularly intuitive, and
geometric tranformations of the skeleton’s control points in-
duce expected deformations of the shape. The most diffused
and flexible paradigm, however, is based on the selection of
a region of interest (ROI) and a handle attached to a point
of the ROI [SA07]; by applying a rigid transformation to
the handle, the ROI is deformed according to various criteria
that depend on the specific method.

In the literature about mesh deformation, the problem of se-
lecting a ROI typically relies on a manual drawing of bound-
ing curves on the surface. While this can be easily done on
2D silhouettes, a 3D shape may be extremely complex and
drawing the boundary of a ROI might become a rather time-
consuming task.

We have experimented our selection engine as a tool for
specifying ROIs for deformation of shape features. To do
this, we have implemented the deformation method pro-
posed in [SA07] and obtained particularly good results. Our
modeling interaction is extremely simple: after clicking on
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Figure 7: Deformation of the Dinosaur model (courtesy of
Cyberware). By clicking on the nose-tip and rotating the
mouse wheel, we obtained the first ROI (left). Then, through
a simple mouse drag we moved the nose-tip to its new posi-
tion and obtained the first deformation (middle). Similarly,
we performed few further interactions to deform the tail, the
head and the legs (right). About 15 seconds were needed to
perform all these operations.

a surface point and rotating the mouse wheel to select a
ROI, we just move the handle by dragging the mouse. In our
framework the default position of the handle corresponds to
the point clicked to select the ROI, but the user is also al-
lowed to change its position by clicking on another point
within the currently selected ROI. The mouse drag defines
a 2D vector in screen coordinates that, when projected on
the current view plane, is transformed to 3D coordinates in
model space. The transformed vector defines the displace-
ment of the handle (see Figure 7).

4.2. Copying and pasting 3D shapes

Exploiting the copy-and-paste mechanism to edit 3D objects
is another example of challenging problem in which an ef-
fective region selection is fundamental.

Once again, we have experimented our selection engine as
the basis for copying relevant shape parts to be used for sub-
sequent modelling, and we have found that the benefit of us-
ing our method is twofold. First, convex features often match
the intuitive notion of semantic feature for natural shapes,
which means that in most cases there is no need to further
edit the selection. Second, both the whole shape and its con-
vex sub-parts are true solid models (and not surface patches),
and pasting a copied part onto a "destination" shape turns out
to be particularly easy, as it involves a simple union of solids
and does not require complicated surface intersection tests,
hole filling or blending operations.

In our prototype system the user can select a part and create a
copy as a new connected component of the tetrahedrization;
after an interactive placement of the new component to the
desired position, the system computes the resulting simpli-
cial complex by simply splitting intersecting simplices and
removing possible duplications.

This copy and paste mechanism is useful in various appli-

cation contexts, ranging from model completion (Figure 8,
left) to shape design by feature composition (Figure 8, right).

5. Results and Discussion

Besides the examples presented in this paper, we have tested
our algorithm on more than 400 models obtained by tetra-
hedrizing the surface meshes used in [VtH07] through a pub-
licly available software called tetgen [SG05], and we have
verified that our method is robust to both noise and non-
uniform sampling density. Note that, since small features are
aggregated first (it is a bottom-up approach), our algorithm is
also stable in the sense that local modifications induce only
local changes in the resulting hierarchy. We have observed
that tetgen is very fast and inserts few additional vertices on
the boundary. It is also possible to let tetgen insert internal
vertices to build well-shaped tetrahedra; even in this case
the HTC algorithm works well, and our experiments have
shown that the features captured by the resulting hierarchies
do not vary significantly. Clearly, if internal points are added
the resulting hierarchy changes accordingly and might also
include completely internal clusters; nonetheless, such ad-
ditional information does not represent a problem and rel-
evant convex features are still captured (Fig. 9). Thus, we
have concluded that it is unnecessary to introduce internal
vertices that would only slow down the computation. When
tetrahedrizing a surface mesh made of n triangles, tetgen
produces 1.78n tets (average value on the aformentioned 400
shape dataset). During the experiments with our prototype,
we have verified that the strongest aspect of the HTC algo-
rithm is the speed; timing results are summarized in Figure
10, where it is assumed that the input shape is "natively"
represented as a tet mesh. If the input is given as a polygon
mesh, a rough 20 % time increase must be considered to in-
clude tetgen’s conversion. Note that, normally, the polygon
mesh to be converted must be closed to define an inner vol-
ume to be tetrahedrized. However, if surface holes are small
and due to missing data, they may be patched prior to conver-
sion through state-of-the-art hole filling algorithms. Instead,
if the polygon mesh is not meant to define a volume (e.g. the
surface of a car door) our algorithm is not appropriate.

No internal vertices         High-quality mesh            Uniform mesh

Figure 9: The same convex features are captured indepen-
dently of the kind of volume tetrahedrization.

Algorithms which are close in spirit to the HTC presented
here are descirbed in [KT03, ZL05, LA07]. Altough these
methods work on surface meshes, their strategies are all
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Figure 8: Left - The original Eros model has a damaged nose; through our selection mechanism we have copied the nose from
the Bimba model and pasted it onto Eros (both models are courtesy of AIM@SHAPE’s Shape Repository). Right - The arms of
the "Mickey" model have been selected and removed. After having selected the arms from another model, they have been placed
in their final position and the system created the resulting connected tetrahedral mesh. Mickey model is courtesy of 3D Cafe.

Listing 2: Pseudo-code for turning a cost-labeled binary
tree into a dendrogram. The outer "for" scans all the chil-
dren of r, including the ccs moved from subtrees.

procedure ToDendrogram (node r) {
for each node c in children of r {
/* T his cycles over newly inserted children too */
if ( c is not a leaf AND cost(c) ≥ cost(r) ) {

for each node cc in children of c {
add cc to children of r
remove cc from children of c

}
remove c from children of r

}
}
for each node c in children of r
ToDendrogram (c)

}

600400200

200

100

thousands of tets00

Figure 10: Processing seconds for models of various tet
count. Tests were run on an Intel Core 2 PC at 1.87 GHz
with 2 Gb RAM and running Microsoft’s Windows Vista.

meant to identify visually-relevant parts, hence they are
worth a comparison with our method. We started with
[KT03] and verified that whereas this method produces good
hierarchical results, it needs to compute the geodesic dis-
tance between all the pairs of vertices, and this introduces
a quadratic term in the complexity. For big meshes, an ap-
proximate solution may be obtained through a prior mesh
simplification, but this is rather complicated (it requires a
pro jection of coarse faces onto the original mesh, which in
turn requires a voxelization) and small convex features might
be missed due to the simplification itself and to a non easy
tuning of some parameters. With a comparable quality of the
results (Fig. 12), our approach is substantially faster, easier
to implement and it does not require any user-defined pa-
rameter. Then we compared our method with [LA07] and
[ZL05] and we verified that our approach is more flexible by
giving hierarchical results, and more practical by not requir-
ing any parameter setting; also in these cases the resulting
decompositions have a comparable quality (Fig. 12). Com-
parisons are summarized in Figure 11 in terms of properties
which are desirable to perform region selection in an inter-
active environment (i.e. hierarchical results, no need to set
parameters, speed). As a further general advantage, by work-
ing on tetrahedral meshes our approach can properly handle
solid models with cavities that would be misinterpreted by
surface-based methods.

Note that the HTC is a greedy algorithm and, as such, it is ex-
pected to produce sub-optimal results when compared with
variational approaches; actually, such a comparison is not re-
ally fair, as the two approaches have different targets (hier-
archical vs. globally optimal decomposition) which are mu-
tually exclusive. An interesting discussion of this aspect was
presented in [AFS06]. We have also compared our selection
mechanism with the one proposed in [FKS∗04]: in the best
situation (i.e. selection of clearly visible regions bounded by
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Figure 11: Comparison with state-of-the-art algorithms in terms of properties which are desirable to perform region selection
in an interactive environment (i.e. hierarchical results, no need to set parameters, speed).

few curves) the two methods require a comparable amount
of interaction, whereas in worse cases (see Fig. 13) our ap-
proach proved to be much more efficient.

(d)

Figure 12: Regions identified on a heart model by [KT03]
(a), [ZL05] (b) and our method (c-d). In (c-d) surface holes
were filled before converting from triangle to tet mesh.

Being fully automatic, our algorithm can be run transpar-
ently by a solid modeler just after having loaded the tet
mesh. On today’s PCs, a model made of 22k tets can be
processed in less than 5 seconds, which is acceptable and
makes it possible to exploit intuitive editing paradigms such
as those described in section 4. Note that in our prototype
system the hierarchy is computed only once when the model
is loaded. After a deformation, one may choose either to re-
compute it or to proceed with the same hierarchy of the orig-
inal model, and there are good reasons for both the choices;
re-computing the hierarchy maintains a one-to-one corre-
spondence between the shape and its hierarchical decom-
position, whereas maintaining the original hierarchy may
preserve some "semantics" that was captured in the original
pose (e.g. if an arm was originally bent and the user stretches
it, a new hierarchy might "miss" the forearm).

5.1. Limitations

Currently, major weaknesses are mostly related to the edit-
ing paradigm proposed. Our deformation mechanism allows
only to translate the handle, while in a complete model-
ing system rotations should be possible as well; also, the
placement of pieces to be pasted must be performed manu-
ally by the user through interactive manipulators. As shown
in [KJS07], however, in some cases it is possible to look for
compatible parts to be exchanged and, for the sake of com-
pleteness, such a modeling metaphor should be imported
into our setting.

Figure 13: The heart is connected with multiple vessels and
tissues, and is tightly occluded by the chest, thus selecting
it as described in [FKS∗04] would be rather unpractical.
Through our mechanism the selection required just a mouse
click and a wheel rotation.

6. Conclusions and future research

We have discussed the advantages of representing 3D shapes
through hierarchical convex approximations, and have pro-
posed an algorithm to convert an existing tetrahedral mesh
to its hierarchical representation. Furthermore, we have ob-
served that such a hierarchy contains virtually all the con-
vex features of the shape at all the scales, and we have ex-
ploited this fact to design an innovative and intuitive interac-
tion mechanism to browse and select these features for fur-
ther processing.

Thanks to recent meshing algorithms, the long-standing
problem of boundary-constrained tetrahedrization has been
solved satisfactorily. In this paper we used tet meshes to pro-
pose an elegant and effective definition of part concavity and
to ease the composition of parts, but we believe that this
representation is well-suited for many other shape analysis
and editing purposes, and we plan to investigate these possi-
bilities in our future research. Further work will be mostly
focused on the modeling paradigm, and solutions will be
searched to face the weaknesses described here. Further-
more, applications of the HTC will be investigated in con-
texts such as shape retrieval and classification [DGG03].
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