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Abstract 
Polygonal meshes obtained from acquisition of real-world 
objects may easily exhibit topological or geometrical 
defects, which often prevent subsequent processing and 
analysis to provide satisfactory results. 
This paper describes the foundations of ReMESH, a user-
friendly graphical tool which incorporates several mesh-
repairing features, and allows to perform a kind of low-
level editing which is often missing in most existing 
software packages. We show how state-of-the-art 
techniques have been adapted and extended to form an 
intuitive and integrated environment, and introduce some 
optimizations and novel ideas that make ReMESH 
particularly efficient. The main application in which the 
tool proves to be extremely useful is the post-processing of 
scanned surface models. In this context, ReMESH 
represents a valid support for the production of certified 
quality meshes. 

1. Introduction 
Triangle meshes are becoming a de-facto standard in most 
application areas, mostly due to their simplicity and to the 
increasing support of hardware producers. In many cases 
the process that produces the mesh is generic, and does 
not take into account particular context-dependent 
requirements. On the other hand, however, systems that 
use these models are designed to work on meshes with 
particular characteristics and, if these are not met, 
software tools are likely to fail or produce unsatisfactory 
results. The process of adapting the raw data to a specific 
application context is usually referred to as polygon mesh 
post-processing [1]. 
As an example, if the targeted application of a huge mesh 
is its inspection at interactive speed, we may count on 
efficient simplification algorithms that reduce the mesh 
complexity down to acceptable limits [12][16]. While 
simplification is included in most mesh editing systems, 
however, several other post-processing methods are not 
yet diffused enough, though they are extremely useful. 
When dealing with huge scanned models, for example, 
interesting post-processing pipelines might include a 
procedure to turn a generic surface mesh into a manifold 
and oriented triangulation, or a method to remove 
degenerate or overlapping faces; in both the cases, one 
may want to introduce as less distortion as possible and 
only where strictly necessary. Methods exist in the 
literature, but each of tehm tackles one particular aspect of 
the problem and there is a lack of tools that implement and 

integrate repairing algorithms in an intuitive and flexible 
framework. 

 
Figure 1: The graphical interface of ReMESH 1.1 

With ReMESH (Figure 1), we propose a user-friendly 
environment for this kind of mesh post-processing. 
Besides a number of automatic procedures that fix typical 
defects of scanned models, ReMESH provides interactive 
tools to let the user have a complete control on the 
geometry and the connectivity of the mesh. As an 
example, it gives the possibility to swap an edge by 
simply mouse-clicking on it, or to automatically find and 
zoom on degenerate elements so that the user can 
interactively modify the local geometry and connectivity, 
again, through simple mouse clicks and drags. For 
completeness, however, ReMESH also provides a 
selection engine, and several high-level operations such as 
simplification, refinement, subdivision, and many others. 
Summarizing, ReMESH is a triangle mesh editor that can 
be used for several sorts of processing, but its very 
distinguishing characteristic is the complete and flexible 
set of tools provided to repair scanned models with their 
typical defects. An exhaustive description of all 
ReMESH’s features would bring us far beyond the scope 
of this paper (see [3] and [4] for a complete overview), so 
here we concentrate the focus on its repairing and low-
level editing capabilities. 

2. Terminology 
When developing ReMESH, we took particular care to 
maintain a neat separation between connectivity and 
geometry. For this reason we make use of some notation 
adapted from [19], and denote a triangle mesh as a pair 
(P,K), where P is a set of N point positions pi = (xi,yi, zi) œ 



R3 with 1 § i § N, and K is an abstract simplicial complex 
which contains all the topological information. The 
complex K is a set of subsets of {1, ..., N}. These subsets 
are called simplices and come in 3 types: vertices v = {i}, 
edges e ={i,j}, and triangles t ={i,j,k}, so that any non-
empty subset of a simplex of K is again a simplex of K, 
e.g., if a triangle is present so are its edges and vertices. 
The abstract simplicial complex K describes a topology 
[22], or connectivity, on P. We refer to P as to the 
geometry of the triangle mesh M=(P, K), while we call 
connectivity, or topology, of M the connectivity defined 
on P through K. We say that M is combinatorially 
manifold iff K is a combinatorial manifold [10]. In its turn, 
K is a combinatorial manifold iff all its vertices are 
manifold, and a vertex of K is manifold if its 
neighborhood is homeomorphic to a disk in the topology 
of K. 
A simplex σ of cardinality k+1 is also called a k-simplex. 
For each k-simplex σ we define a function j: 
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Now, for each k-simplex σ in K, let us consider the subset 
of R3 formed by the points x that can be expressed as the 
convex combination of the vertex positions of σ: 
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We refer to the union of all such subsets as to the 
geometric realization S Õ R3 of the triangle mesh 
M=(P,K). Thus, the geometric realization is a set of points 
of R3 for which an Euclidean topology exists, and we say 
that S is manifold iff the neighborhood of each point in S 
is homeomorphic to a disk. Throughout the reminder of 
this paper we say that M is geometrically manifold, or 
manifold in the Euclidean sense, if S is manifold with 
respect to the Euclidean topology. 
Note that a triangle mesh may be manifold in the 
combinatorial sense and not in the Euclidean one, for 
example when the mesh self-intersects. Also, a 
geometrically manifold mesh may be not combinatorially 
manifold. To obtain such a model, for example, start from 
a triangle mesh which is both combinatorially and 
geometrically manifold, pick an edge e ={i,j}, add a new 
triangle t ={i,j,k} and set pk=pj.  
If we relax the requirement of homeomorphism with a 
disk to the weaker condition of homeomorphism with a 
disk or with a half-disk, we say that M is manifold with 
boundary, which holds both in the Euclidean and in the 
combinatorial sense. 
We define an orientation of an edge as an ordering of its 
two vertices. Furthermore, we call an orientation of a 
triangle an equivalence class of ordering of its vertices 
where (v1,v2,v3) ∼ (vψ(1),vψ(2),vψ(3)) are equivalent 
orderings if the parity of the permutation ψ is even. Two 
triangles sharing an edge e are consistently oriented if they 

induce different orientations on e. A triangle mesh is 
orientable iff all its triangles can be oriented consistently. 

3. Previous Work 
3.1 Fixing the connectivity 
In many application contexts the input mesh is required to 
be manifold and orientable, while several commonly used 
graphic formats (VRML, STL, OFF, IV, …) may 
represent sets of polygons which do not necessarily 
constitute manifold and orientable surfaces. 
In [26] a method is proposed to convert non-manifold 
regular sets to manifold surface meshes by identifying 
non-manifold edges (i.e., edges having more than two 
incident faces); each such edge is replicated a number of 
times sufficient to assign at most two incident faces to 
each copy. In a second step, non-manifold vertices are 
also identified and duplicated properly. In a similar 
setting, [13] identifies non-manifold edges and cuts the 
surface along such edges, that is, each non-manifold edge 
having k incident faces is turned into k boundary edges 
having 1 incident face each. In a second step, the user 
may choose whether to pinch or to snap such boundary 
edges; in the former case, each boundary loop is simply 
zipped, or closed, while in the latter case pairs of 
neighboring boundaries are merged together. 

3.2. Fixing the geometry 
As far as the geometry is concerned, two main approaches 
have been investigated in the literature. A first class of 
methods is based on the construction of an intermediate 
volumetric representation, from which the resulting 
surface is completely re-built. Methods of this kind fix 
both the geometry and the connectivity, and include [23] 
and [24], in which a uniform voxelization of the space is 
constructed and contoured [21] to extract a clean manifold 
surface. In [17], an adaptive space subdivision (i.e., an 
octree) is used, and a dual contouring approach [18] 
makes the method able to reconstruct sharp features.  
Another important class of algorithms is based on a direct 
processing of the input mesh, without the need of 
intermediate representations. In [28], mesh zippering was 
introduced as a tool for merging partially overlapping 
range images. Tiny holes and surface cracks may be 
removed through patching triangles, as described in 
[6][8]. If bigger holes need to be fairly filled, the method 
introduced in [20] is able to produce patches in which 
both the sampling density and the normal field of the 
surrounding surface is reproduced. If the surface has small 
unwanted handles or tunnels (sometimes referred to as 
topological noise), these can be located and removed 
following the approach described in [15]. By inserting 
vertices and collapsing edges properly, [9] proposes an 
automatic procedure to remove degenerate triangles. 
Typically, volume-based methods provide certified 
quality results, while direct methods may fail for many 
reasons. Filling non-planar holes with non self-



intersecting triangles, for example, is not always possible 
and determining a valid triangulation, if any, is an NP-
complete problem [7] and is tackled through heuristics. 
On the other hand, volumetric methods are more 
demanding in terms of computational resources, and 
introduce an error everywhere regardless of the local mesh 
quality. In most situations an input mesh has few local 
defects, while most of the triangles are correctly 
connected to each other. For this reason, we chose to 
implement a direct method in ReMESH; If the repairing 
cannot be completed automatically, a set of interactive 
tools are provided to cut, merge, remove and fill faulty 
regions clearly displayed by the software. In any case, 
however, the user may run a volumetric repairing based 
on the Marching Intersections approach [24]. 

4. ReMESH 
ReMESH provides two sets of repairing operations. 
Operations of the first set are mandatory, are performed 
automatically, and serve to convert the set of input 
polygons into a set of manifold and oriented triangle 
meshes that can be properly described by ReMESH’s 
internal data structure. The second set of operations has 
been designed to make the mesh more robust and 
utilizable in a wider range of applications. 

4.1. Mandatory Repairing 
While loading, an internal data structure [3] is initialized. 
Such a structure has been optimized to efficiently manage 
manifold and oriented meshes, possibly with boundary. 
Most graphic formats supported by ReMESH (VRML, 
OFF and IV), however, may represent non-manifold 
and/or non-orientable sets of polygons. In this case the 
loader runs the algorithm described in [13]. If the resulting 
manifold surface is not oriented, however, ReMESH 
assigns an orientation to one triangle for each connected 
component, and propagates the orientation to neighboring 
triangles; once all of the triangles have been visited, the 
mesh is cut along edges having non-consistently oriented 
incident triangles. Further operations include the 
triangulation of non-triangular faces, the removal of 
isolated vertices, and the duplication of non-manifold 
vertices. 
All the operations described are performed automatically 
by the loader, so that the user always works on manifold 
and oriented meshes.  

4.2. Optional Repairing 
Once the data structure is properly filled with a mesh 
which is manifold in the combinatorial sense and oriented, 
various sorts of improvements may be still applied. 
Among its features, ReMESH provides automatic and 
user-assisted functionalities to remove defects that would 
cause subsequent processing to fail. 

Removal of small and isolated components 
In many cases a 3D application expects the input mesh to 
be made of a single connected component; on the other 

hand, however, several mesh generation techniques often 
create tiny disconnected patches [21][24] near a main 
surface, and removing all but the biggest connected 
component is a functionality of clear interest. In 
ReMESH, such a functionality has been implemented by 
simply counting the number of triangles forming each 
component, that is, the biggest component is the one with 
the highest number of triangles. 

Hole Filling 
Also, many applications require the input to be watertight 
(i.e., without surface holes). Filling holes with ReMESH 
is a very flexible and controllable operation. It is possible 
to triangulate a single hole by clicking on one of its 
boundary edges, or to fill all the holes without user-
assistance. In both the cases, the hole(s) may be simply 
triangulated [6] or it(they) may be patched by inserting 
new vertices so as to reproduce the sampling density and 
the normal field of the neighboring surface [20]. In this 
latter case, we have analyzed the method proposed by 
Liepa in [20] and adapted it for a more general case. 
Essentially, Liepa’s hole-filling procedure is subdivided 
in three steps: triangulation, refinement and fairing. In the 
first step the hole is triangulated as suggested in [6]; In the 
second step, new vertices are placed within the newly 
inserted triangles to produce the desired vertex density. 
Specifically, each new triangle which is too big wrt the 
neighboring faces is subdivided in three sub-triangles by 
inserting a new vertex at the barycenter. At the end, edges 
are iteratively swapped so as to verify in-sphere tests in a 
Delaunay-like manner. Finally, in the third step, the new 
vertices are moved to positions that minimize an 
appropriate functional and make the patch’s normal field 
fairly continuous with respect to the neighboring surface. 
In the context of repairing big scanned models, we found 
it necessary to perform some little improvements and 
extensions to the original method. 
First, we have observed that when the hole is big with 
respect to the average length of its bounding edges, the 
initial triangulation is inevitably made of some long and 
thin triangles, and the Delaunay-like optimization does 
not always converge to a satisfactory result due to limited 
robustness when computing circum-spheres. In these 
cases one might use exact arithmetics [27], but for big 
models this would lead to unacceptably long execution 
times. We have found that minimizing the length of 
internal edges provides excellent results, and represents a 
much faster and robust procedure. Thus, in the iterative 
optimization, we swap an edge only if its length after the 
swap decreses. 
Our main innovation, however, consists of a very simple 
but effective approach to merge together pairs of 
disconnected boundaries (Figure 2). Given two boundary 
loops, b1 and b2, the user clicks on a pair of vertices 
belonging to the two boundaries. After connecting them 
through a new edge that we call the gate, at each step the 
algorithm attaches a new triangle t to the gate and to an 



edge of one of the two boundaries, and the newly created 
edge becomes the new gate. This operation is repeated 
until all the edges belonging to both b1 and b2 become 
internal. For each new such triangle t, we choose its third 
vertex (i.e., the one which is opposite to the gate) either on 
b1 or on b2, and such a choice is driven by the attempt to 
complete the two boundaries roughly at the same speed. 
More formally, let E1 and E2 be the sets of edges 
belonging to b1 and b2 respectively, and let li be the total 
length of edges in Ei. Also, we make use of the set Bi = 
{eœEi : e is on boundary} so that, initially, Bi=Ei. Let ni be 
the total length of edges in Bi. At each step, the third 
vertex of the new triangle is chosen so as to minimize the 
quantity c = |n1l2-n2l1|. 

 
Figure 2: Left: boundaries connected as suggested in 

[20]. Right: connected using our method. 

The other two steps of our modified Liepa’s hole-filling 
do not require the patching triangulation to be simply 
connected, so we just use them on our cylindircal patch. 
Our minimization of c makes the algorithm proceed at 
about the same speed on both the boundary loops, and 
provides much more satisfactory results than simply 
adding two triangles to change the topology and then 
using the triangulation algorithm (see Figure 2), as 
suggested in [20]. 

Removal of tiny handles 
Another typical source of malfunctions for many 3D 
applications is the presence of unwanted handles or 
tunnels. Mostly often, such topological defects are due to 
the mesh generation process, and do not correspond to 
actual topological entities in the original 3D data. In [15] 
such defects have been conceptualized under the term 
topological noise, and in the same work the authors 
propose a procedure to identify and remove them. In 
ReMESH, we implemented an automatic procedure to 
identify and select tiny handles. First, the user clicks on 
the mesh and, by dragging the mouse, draws a semi-
transparent sphere on it. Then, all the handles that fit 
within the sphere are automatically selected for further 
processing. The selected triangles, for example, may be 
removed and the resulting holes patched, with the result of 
reducing the genus of the mesh. 
The algorithm implemented in ReMESH is based on a 
depth-first, triangle-based visit of the mesh, as the one 
used in [25]. For the sake of explanation, we imagine to 
remove one triangle at a time, starting from a seed one, in 
a depth-first manner. In some cases, for example when 
wrapping around a cylinder, expanding the hole requires 
its boundary to split. In particular, it happens that the next 

triangle to be removed has only one boundary edge but all 
its three vertices on the boundary. In this case, we use the 
notation introduced in [25] and label such a triangle with 
an S symbol (see Figure 3). Let e1 and e2 be the two non-
boundary edges of such a triangle; after removing it, the 
removal proceeds from the only triangle attached to e1, 
while e2 is put onto a stack for future processing. If there 
are no handles, the surface between e1 and e2 is 
disconnected, so we remove the component containing e1, 
and then the other one separately. If, when removing 
triangles from the first component we reach e2, we went 
across a handle. In this case, we tag the S triangle with a 
particular symbol S’. Actually, there is no need to remove 
triangles, while it is sufficient to mark them as visited. 
 
 

e1 e2 

Init 1 n

n+1 

 
Figure 3: Example of depth-first visit starting from a 

seed face and tagging of an S triangle. 

Typically, topological noise is present on meshes obtained 
from laser scanner data [15]. We have experienced that 
for such class of meshes, in which the variation in edge 
length is not excessive, S’ triangles are geometrically 
close to actual handles. Through this observation, we can 
locate most of the tiny handles by simply analyzing the 
topology of a spherical neighborhood (whose radius was 
interactively selected by the user) of each such triangle. 
Using this procedure, ReMESH locates tiny handles much 
more quickly than the method proposed in [15].  As an 
example, we run ReMESH on an old P3 450MHz, and we 
could locate 98 of the 104 handles of the famous Buddah 
model (1087716 faces) in about 32 seconds, which is 
twenty times less than what reported in [15] for the same 
mesh on a faster PC (the comparison is fair because the 
time-consuming part of [15] is the location, and not the 
simplification of the handles). 

Degenerate triangles 
The problem of robustness of geometric algorithms has 
been receiving a lot of attention for more than 15 years 
[14][11], and it remains an important area of research. 
When designing a geometric algorithm, in fact, a 
researcher uses the theory of real numbers and their exact 
arithmetic. At implementation time, however, real 
numbers must be approximated with finite precision 
representations and the error introduced cannot always be 
neglected, as it may cause a wrong branching in the 
process pipeline and, as a consequence, it may cause a 



topological inconsistence or a failure of the algorithm. 
Typically, such problems are originated from degenerate 
or nearly degenerate triangles having extreme angles, also 
referred to as skinny triangles [9]. 
In order to produce robust meshes, we chose to implement 
a strategy based on the Epsilon Geometry introduced in 
[14]. ReMESH provides the possibility to remove all the 
triangles with angles smaller than ε or bigger than π-ε, 
where ε is a customizable threshold angle. The removal is 
carried out through swapping and contraction of edges, 
inspired from ideas of [9]. Specifically, triangles having a 
nearly flat angle are treated by swapping the edge opposite 
to such angle, while triangles having a nearly null angle 
are removed by collapsing the edge opposite to such angle 
to its mid-point (checks are performed in this order). The 
default value of ε is arcsin(10-5); by experiment, this value 
proved to be a good compromise between precision and 
robustness. 
Even if the strategy implemented does not guarantee 
robustness in all the cases, we have found that it avoids 
nearly all of the most common problems when dealing 
with non robust applications. All the check and repairing 
tasks can be performed by the user after selecting a new 
value for ε. This can be useful when the model being 
edited must become the input for a less robust system. 

Sharp feature recovery 
During a 3D acquisition process, it is extremely hard to 
align the scanning pattern with sharp edges and corners of 
the object being digitized. As a result, in the digital model 
such sharp features are replaced by irregular chamfer 
triangles. ReMESH provides an implementation of the 
EdgeSharpener algorithm that, after an identification of 
chamfer triangles, inserts new vertices on them and 
reconstructs sharp edges and corners based on an 
extrapolation of neighboring smooth regions [5] (see 
Figure 4). 

 

 
Figure 4: From left to right: original; smooth regions 

detected; sharpened model. 

4.3. Manual repairing by low-level editing 
In some cases, all the automatic functionalities provided 
by ReMESH may fail to remove some defects. This may 
happen, for example, when too many degenerate triangles 
are adjacent to form surface spikes (see Figure 5). In these 
cases, ReMESH provides a button that looks for 
degeneracies; the last problem detected, if any, is 
automatically visualized by properly pointing the camera, 
and the tool provides a number of interactive operations 
that let the user choose what to do in each particular 
situation. By simply clicking and dragging the mouse, it is 

possible to swap edges, or to remove one triangle at a 
time, or to select a region and re-triangulate it using a 
Delaunay-like method, or to locally run some iterations of 
Laplacian smoothing, and so on. 

 
Figure 5: Automatic location of a spike incorporating 

degenerate triangles (top row). Selected region 
(bottom-left) and removal (bottom-right). 

Selections 
In ReMESH it is possible to define regions of interest, or 
selections. A selection is a set of mesh triangles on which 
further operations have their effect. By clicking on a point 
of the surface, the user selects the center of a sphere 
whose radius is interactively controlled by dragging the 
mouse without releasing the button. When the button is 
released, ReMESH considers all the triangles entirely 
contained in the sphere. These triangles may constitute 
several disconnected components; the component 
containing the center of the sphere is selected and 
highlighted. To refine a selection, the status of each 
triangle may be toggled by clicking on it, that is, a 
selected triangle becomes unselected and vice-versa. Also, 
it is possible to grow, shrink and invert the current 
selection, to add another selection by holding the shift 
key, to remove or intersect selections and so on. 

5. Conclusions 
In this paper we have introduced the foundations of 
ReMESH, a graphical tool integrating most of the existing 
techniques developed so far to repair polygonal meshes. 
Besides presenting the toolbox, we discussed some 
improvements and extensions to state-of-the-art methods 
which have been implemented in ReMESH. 
In version 1.1, ReMESH has been extensively tested on 
several scanned models ranging from thousands to 
millions of faces, and provided extremely good results in 
all the cases.  
ReMESH was used to post-process raw geometry and 
produce several high-quality models for AIM@SHAPE’s 
Shape Repository [2]. The main goal of such repository is 



to become a reference point for persons looking for 
“certified” shapes, in which the plain geometry is 
endowed with metadata specifying, among the others, 
interesting characteristics such as manifoldness, 
orientation, watertightness, genus, and so on. 
The model shown in Figure 1 was digitized through a 
Minolta Vivid 910 laser scanner. After aligning and 
merging the range images, the resulting mesh was not 
manifold and not orientable, had numerous degeneracies, 
tiny disconnected components and plenty of surface holes 
due to visibility occlusions. All these problems have been 
fixed through ReMESH, so that the model could become a 
proper input for further processing. Such a fixed model is 
made of more than one million faces, and became the 
representative certified mesh of AIM@SHAPE’s Shape 
Repository. 
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