
 1

Sharpen&Bend: Recovering curved sharp
edges in triangle meshes produced by feature-

insensitive sampling
M. Attene, B. Falcidieno, J. Rossignac and M. Spagnuolo

Abstract - Various acquisition, analysis, visualization and compression approaches sample surfaces of 3D shapes in a uniform
fashion, without any attempt to align the samples with sharp edges or to adapt the sampling density to the surface curvature.
Consequently, triangle meshes that interpolate these samples usually chamfer sharp features and exhibit a relatively large error in
their vicinity. We present two new filters that improve the quality of these re-sampled models. EdgeSharpener restores the sharp
edges by splitting the chamfer edges and forcing the new vertices to lie on intersections of planes extending the smooth surfaces
incident upon these chamfers. Bender refines the resulting triangle mesh using an interpolating subdivision scheme that preserves
the sharpness of the recovered sharp edges while bending their polyline approximations into smooth curves. A combined
Sharpen&Bend post-processing significantly reduces the error produced by feature-insensitive sampling processes. For example,
we have observed that the mean-squared distortion introduced by the SwingWrapper remeshing-based compressor can often be
reduced by 80% executing EdgeSharpener alone after decompression. For models with curved regions, this error may be further
reduced by an additional 60% if we follow the EdgeSharpening phase by Bender.

Index Terms: I.3.5 [Computer Graphics]: Computational Geometry and Object Modeling – Boundary representations, Geometric
algorithms, languages and systems

1 INTRODUCTION
The surfaces of 3D models are often represented by
approximating triangle meshes. Their triangles are the
simplest form of interpolant between surface samples,
which may have been acquired with a laser scanner
[2][3][18], computed from a 3D scalar field resolved on a
regular grid [8][32], or identified on slices of medical data
[10][12]. Most acquisition techniques restrict each sample to
lie on a specific line or curve whose position is completely
defined by a pre-established pattern. For example, a laser-
scanner measures distances along a family of parallel or
concentric rays that form a regular pattern or grid. One
may also argue that an iso-surface extraction uses three
such patterns, aligned with the three principal directions.
Because the pattern of these rays or stabbing curves is not
adjusted to hit the sharp edges and corners of the model,
almost none of the samples lie on such sharp features.
Therefore, the sharp edges and corners of the original shape
are removed by the sampling process and replaced by
irregularly triangulated chamfers. The error between the
original shape and the approximating triangle mesh may be
decreased by using a finer sampling step. But, over-
sampling will increase significantly the number of vertices,
and thus the associated transmission and processing cost.

Furthermore, as observed by Kobbelt et al. [29], the
associated aliasing problem will not be solved by over-
sampling, since the surface normals in the reconstructed
model will not converge to the normal field of the original
object. Similar aliasing artifacts can be observed on models
produced by surface remeshing, which is the basis of three
of the most effective compression techniques published
recently [5][20][1]. All three methods create a new mesh
that approximates the original one. Vertices of the new
mesh are placed on the original surface or at quantized
locations near the surface, so that their position can be
predicted more accurately and encoded with fewer bits. To
reduce the encoding of each vertex to a single parameter,
the vertices of the resampled mesh are restricted to each lie
on a specific curve, which is completely defined by
previously processed neighboring vertices. Unfortunately,
almost none of the new vertices fall on sharp edges or
corners. As a consequence, the sharp features are not
captured in the new mesh and a significant error between
the original surface and its approximating triangle mesh
occurs near these sharp features. To reduce this error, one
may choose to use a feature-sensitive remeshing process
[30], which attempts to place the samples on the sharp
edges and corners of the original model. Unfortunately, this
solution requires a more verbose representation of the
samples, which are no longer restricted to each lie on a
specific curve and hence must be encoded using 3
coordinates each.

————————————————
• M. Attene, B. Falcidieno and M. Spagnuolo - Istituto di Matematica

Applicata e Tecnologie Informatiche, sez. di Genova, Consiglio Nazionale
delle Ricerche. E-mail: {attene, falcidieno, spagnuolo}@ge.imati.cnr.it.

• J. Rossignac – College of Computing, Georgia Institute of Technology. E-
mail: jarek@cc.gatech.edu In order to retain the compactness of a feature-

1

b c d

Original Emax = 0.92%

a

L2 = 0.12% L2 = 0.03% L2 = 0.01%
Emax = 0.21% Emax = 0.15%

Fig. 1: An original model (a) was re-meshed through a feature-insensitive algorithm (b). The sharp edges and corners were restored by
EdgeSharpener (c). Then, Bender faired the smooth regions without rounding off the sharp features reconstructed by EdgeSharpener (d).
For each model, the maximum distance from the original surface (Emax) and the mean-squared distortion (L2) are reported. All the values are
percent of the bounding-box diagonal.

insensitive retiling while reducing the approximation error,
we have developed the EdgeSharpener approach. It
automatically identifies the chamfers and replaces them
with refined portions of the mesh that more accurately
approximate the original shape, restoring a piecewise linear
approximation of the sharp edges. After the sharp edges
have been restored by EdgeSharpener, the error between
the triangle mesh and the original model is distributed
more uniformly and accounts for the difference between
the original curved surface and its piecewise-linear
approximation. When the original surface is smooth
everywhere, the error may be further reduced by
subdividing the approximating triangle mesh. An
interpolating subdivision process [14][44] may be used to
refine the triangle mesh globally, bending the triangles to
smooth the surface at the edges and vertices. Unfortunately,
when the original model contains sharp edges, such a
bending process would round or blend the sharp edges
restored by EdgeSharpener, and hence would increase the
error, annihilating the benefits achieved by EdgeSharpener.
Considering sharp edges as if they were boundaries, as
suggested in [44], is not sufficient for retaining corners and
sharp edges with dead-ends. Thus, we introduce here a
new approach, called Bender, which preserves the
sharpness of the features restored by EdgeSharpener, while
bending them so that they form smooth curves between
sharp corners. For edges that are not sharp and not adjacent
to a sharp edge, Bender performs a modified Butterfly
subdivision [43][44]. For other edges, we introduce new
subdivision rules, which make it possible to properly refine
sharp corners, sharp edges, and also smooth edges that
connect to sharp features. The benefits of combining Edge-
Sharpener and Bender (into a filter that we call
Sharpen&Bend) are illustrated in Fig. 1.

A significant number of publications have been focused
on identifying sharp features in a 3D model [24][25], even
in the presence of noise. More recently, solutions were
proposed for maintaining sharp features during remeshing
[29][41]. In both cases, the features to be extracted or
preserved are present in the model. In contrast to this body
of previous work, our solution recovers sharp features in an
aliased model, from which they have been removed by
feature-insensitive retiling. Our edge-sharpening process
works well for meshes generated through a variety of
uniform sampling schemes and does not introduce

undesirable side effects away from sharp features.
The above considerations reveal the importance of

Sharpen&Bend for post-processing laser-digitized models.
Most surface reconstruction approaches, in fact, are not able
to correctly reconstruct sharp features. Moreover, while
sufficient sampling conditions have been studied for
smooth 3D objects [2], a guaranteed-quality reconstruction
of surfaces with sharp features has remained a challenge,
even in the 2D case [13].

1.1 Original contributions
A preliminary description of EdgeSharpener was first
introduced in a conference publication [4]. In this article,
however, a more thorough analysis of the state of the art is
presented, along with a deeper investigation of the results
and limitations of the method. Moreover, extensions to the
original algorithm are introduced in order to tag sharp
edges while reconstructing them. For non-adaptively
sampled surfaces, this approach is more accurate than
typical methods based on a threshold of the dihedral angle.

Here we also introduce Bender, which uses novel rules
to maintain the sharpness of tagged edges while
subdividing the mesh. We show that to properly handle
sharp edges which are not closed 1-manifold curves it is not
sufficient to treat them as if they were boundary curves,
and hence we introduce novel special rules.

Most important, this paper proposes a new all-in-one
black box to improve non-adaptively (re)sampled meshes.
We show that, for a variety of popular re-meshed models,
Sharpen&Bend significantly decreases their distortion with
respect to the corresponding original shapes.

2 RELATED WORK
Here, we successively discuss approaches to identify
features in unstructured data (scattered points), partially
structured data (contours or profiles), and structured data
(polygonal meshes). Then, we discuss feature-sensitive
polygonization, re-tiling, smoothing, and subdivision
approaches that preserve sharp features.

2.1 Identifying sharp features in unstructured point
clouds

When a scattered point sampling of a surface is sufficiently
dense, sharp features may be inferred by analyzing the

2

3

neighborhood of each point. This analysis may be
performed after a triangle mesh has been reconstructed [1]
or directly from a point cloud [19], by first organizing it
through a neighbor graph, then evaluating the flatness of
the neighbors of each point, and finally extracting an
optimized sub-graph spanning non-flat vertices. Even after
pruning, the edges of that subgraph often form zig-zag
patterns, because they connect input samples on opposite
sides of sharp features.
Gumhold et al. propose to smooth the zig-zags by fitting
low degree splines [19]. The resulting curves are likely to lie
on chamfers, rather than on the intersections of extrapolated
surfaces. For instance, if the original solid had a convex
sharp edge, the chamfer produced by a feature-insensitive
sampling would cut through the solid. The spline
approximation would lie on the chamfer and hence inside
the solid, rather than close to the original sharp edge.
Perceptual grouping rules, based on surface normals, have
been used to infer smooth surface patches [21]. Sharp
features are recovered as intersections of adjacent patches.
When surface normals are not provided, the method
estimates them at each sample from the locations of
neighboring samples. Hence, normals at samples near
sharp features are polluted by neighbors on other patches.
Polluted normals lead to errors in the estimation of sharp
features.

The two approaches described above work well for
dense point clouds. The Edge-Sharpening approach
proposed in this paper extends sharp feature recovery to
cases where the vertices of the input triangle mesh are
sparse. Moreover, the sharp edges recovered by our
method lie precisely on the intersections of the estimated
incident smooth patches.

2.2 Recovering sharp features in scanned data sets
In most 3D data acquisition processes, the cloud of points
captured by a scanner is organized as uniformly spaced
samples along a series of nearly parallel rows. The spacing
of the rows and of the points along a row is uniform in the
scanner’s parameter space (an angle that controls the
orientation of the laser beam), but not in terms of Euclidean
distance. Sharp features are typically extracted by detecting
curvature extrema along each row and by matching them
between successive rows [6]. Similarly, if the points are
known to be captured along straight profiles, as in typical
bathymetries, it is possible to join close vertices of adjacent
profiles into feature lines by analyzing, and possibly
matching, the shape of their neighborhood along the profile
[36].

Clearly, one could adapt the above approaches to
triangle meshes by computing regular cross-sections and
doing the 1-D analysis to find matching points. However,
the cross-sections will typically not go through the sample
points of the mesh being swept and hence would add
sampling noise and reduce the reliability of the approach.

2.3 Recovering sharp edges in Triangle Meshes
In most situations, surface samples are sparse and the
surface that interpolates them is defined by a
triangle/vertex incidence graph. In these cases, the
additional information given by the connectivity graph lead
to significantly better sharp-edge recovery results when
compared to methods dealing with sparse clouds of
unstructured points. In [24], for example, a method is
described for extracting a multi-resolution organization of
sharp edges from a triangle mesh. The method is based on
the assignment of a weight to each edge, so that the weight
is proportional to the dihedral angle, or to some measure of
the dihedral angle which uses a bigger support. Then, the
heaviest edges are used to form patches of the surface
which are thinned through a skeletonization process. Since
this process may become slow for dense meshes with many
sharp features, the input triangulation is first turned into a
progressive mesh [22], and the feature extraction operates
on the coarsest mesh. Higher resolution features are
obtained by inverting the edge-contractions through vertex-
splits, as described in [22], while keeping track of the
features. This approach, however, may result in the
identification of a set of lines corresponding to small radius
blends in the input model. The use of curvature extrema
[42] suffers from the same limitation.

2.4 Feature sensitive (re)meshing
Feature sensitive sampling techniques have been mainly
developed for iso-surfaces and for polygonal meshes. When
the model being sampled is an iso-surface and the resulting
model interpolates the samples through a polygonal mesh,
the process is called feature sensitive meshing, tiling, or
polygonization. In the particular case where the input model
is already a triangle mesh, the process is called feature
sensitive re-meshing or re-tiling.

The loss of sharp features during the polygonization of
iso-surfaces has been addressed in [34][35], where the
standard marching-cubes algorithm is improved by
optimizing the location of sample points so as to snap some
of them onto sharp features. In [34], the initial mesh
produced by marching-cubes is optimized by forcing its
triangles to become tangent to the iso-surface. Such a
constraint automatically eliminates the chamfers by moving
each of their triangles to either one or the other side of the
sharp edge. Similarly, in [35] each vertex is iteratively
moved so that the normals at the triangles incident to the
vertex converge to the normals of the underlying iso-
surface. In a similar fashion, when remeshing an original
triangulation, the aliasing problem may be avoided by
snapping some of the evenly distributed vertices to sharp
feature lines, as proposed in [41].

During the triangulation of an iso-surface, an extended
marching cubes (EMC) algorithm [29] derives vertex
normals from the original scalar field and uses them to
decide whether a voxel contains a sharp feature. If so,
additional vertices are created in the voxel and placed on

4

intersections between planes defined by the vertices and
their normals.

This EMC approach was subsequently improved in [27],
enabling it to accurately polygonize models with sharp
features using an adaptive subdivision of the space (i.e. an
octree), with the result of obtaining polygonal models with
less faces.

These feature-sensitive surface triangulation approaches
exploit information about the original surface. In contrast,
the EdgeSharpener solution proposed here operates on a
triangle mesh produced by a feature-insensitive sampling
and yet is able to restore most of the sharp features
automatically, without additional information. One may
argue that an application of the EMC to a polygonal mesh
may be used to infer and hence reconstruct the sharp
features. In [29], such an application (i.e. a remeshing) is
discussed and, in fact, it is useful to improve the quality of
meshes having degenerate elements or other bad
characteristics. In some cases, the information at the edge-
intersections makes it possible to reconstruct sharp features
in an Edge-Sharpener like manner. For example, if a cell
contains an aliased part that does not intersect the cell’s
edges, the normal information at the intersections is used to
extrapolate planes and additional points are created on the
inferred sharp feature. If, on the other hand, the cell’s edges
do intersect the aliased part, the normal information
becomes noisy, and nothing can be predicted about any
possible feature reconstruction. In contrast, our approach
for the construction of the extrapolated planes makes
EdgeSharpener less sensitive to such problems. Moreover,
remeshing the whole model through the EMC approach
can introduce an additional error on the regions without
sharp features. Conversely, the local modification we
propose only affects the aliased zones by subdividing only
the triangles that cut through the original solid (or through
its complement) near sharp edges.

2.5 Feature preserving subdivision and smoothing
The problem of preserving sharp features during the
subdivision of polygonal surfaces has been tackled in [23],
where the authors use a modification of the Loop’s
subdivision scheme [31] to improve the quality of the
results of their surface reconstruction algorithm. In their
approach, after a coarse reconstruction which interpolates
the input point cloud with a triangle mesh, edges of the
mesh are tagged as sharp if their dihedral angle exceeds a
threshold or if they lie on the boundary. Then, the mesh is
used as the input to a subdivision process that generates a
piecewise smooth subdivision surface fitted to the data
through an iterative optimization process. The optimization
computes an approximation of some limit points of the
surface and transforms the base domain so that these points
best fit the input data with respect to an energy function.
All the modifications applied to the base domain preserve
the tagged edges. For example, if a tagged edge is split,
then the resulting two edges connecting the old end-points

with the newly inserted vertex are tagged as well. The
result of this process is a tagged base domain which can be
subdivided through a modification of the Loop’s
subdivision scheme which preserves the tagged features.
Since the subdivision scheme is not interpolating, a trade-
off between conciseness and fit to the data is necessary.

In a different approach, when the sharp features are
selected on a quad-mesh by the user, modified subdivision
rules may be used to subdivide the mesh in order to obtain
sharp features in the limit surface [7]. This is particularly
useful for multiresolution editing purposes where, in order
to put a curved sharp edge on the limit surface, the user can
simply draw a piecewise linear curve on the base domain.
Then, this curve will be subdivided through the modified
rules that guarantee its eventual sharpness.

The Bender algorithm subdivides triangle meshes and is
inspired by the approximant scheme developed in [23].
When the model to be improved does not contain noise, as
in the case of most results of remeshing processes, an
approximant scheme such as Hoppe's [23] would introduce
an unnecessary error on vertices. Furthermore, such a
scheme may require a considerable number of iterations to
reach an acceptable fit to the data. In contrast, since our
feature preserving subdivision scheme is interpolatory,
we preserve the input data while bending the surface
patches interpolating sample points.

When the input triangle mesh interpolates noisy
samples, subdivision may have no benefit. Instead, a
smoothing process may be needed after the Edge-
Sharpening. Recent feature-preserving techniques for mesh
smoothing [16][26] propose a penalty function that is based
on the distance between a sample P and a tangent plane
through sample Q to diminish the influence of P on Q when
the two are separated by a sharp edge.

3 THE EDGE-SHARPENER ALGORITHM
The errors produced by feature-insensitive sampling
approaches are concentrated in what we call chamfer
triangles, which cut through the solid near sharp convex
edges or through the solid’s complement near sharp
concave edges. Our objective is to identify these triangles
and to replace them with a finer triangle mesh portion that
better approximates the sharp features of the solid.

In order to preserve the integrity of the triangle mesh,
we subdivide the chamfer triangles by inserting new
vertices on edges between two chamfer triangles and also
inside the corner triangles where several sharp features
meet. Our approach, which does not split the edges that
separate chamfer and non-chamfer triangles, involves three
parts:
• Identify the chamfer edges and corner triangles
• Subdivide them by inserting new vertices,
• For each newly inserted vertex, estimate the sharp edge or

corner that we are trying to restore and snap the vertex onto
that sharp edge or corner.

3.1 Identification of the chamfer triangles
Our approach identifies what we call chamfer edges, which
are shown in blue in Fig. 2. It is based on the identification
of smooth edges, which tessellate smooth portions of the
original model and are identified using the following
simple heuristic.

In the remainder of the paper, an edge is said to be
smooth if the angle between the normals to its two incident
triangles is less than a given threshold, which we have
chosen to be twice the average of such angles for the entire
mesh. This choice of the threshold angle is motivated by the
following consideration: when an original piecewise
smooth model is sampled with a nearly infinite density, the
dihedral angle at edges not belonging to chamfer triangles
is nearly π. Furthermore, the number of non-smooth edges
is negligible with respect to the total number of edges, thus
the average dihedral angle remains close to π or,
equivalently, the average angle, ε, between the normals of
two adjacent triangles remains close to 0. The influence of
non-smooth edges on ε is small but not null, thus the actual
angle for smooth edges is slightly smaller than ε. In practice
we do not have infinite samplings, so taking ε as threshold
makes the algorithm too sensitive to small amounts of
noise. We have experienced that doubling ε is a good
compromise between theoretical correctness in the ideal
case and robustness in all of the practical cases
encountered.

Initial Input Smooth Edges

1 2 3

4 5 6

Fig. 2: An original model (top-left) was re-meshed through a feature
insensitive algorithm (top-right). The smooth edges in the aliased input
model were detected and the six filters (1-6) have selected the chamfer
edges and the corner triangles to be subdivided.

Our approach to identify chamfer triangles is based on
the initial identification of the smooth edges and on a
succession of six simple filters. Each filter colors the edges,
vertices, or triangles, based on the colors of their adjacent or
incident elements. (To simplify the presentation, we use
colors instead of tags.)

The first step is to paint brown all of the smooth edges

(we assume that all vertices, edges, and triangles are
initially gray), then we apply the following sequence of six
filters:
• Paint red each vertex whose incident edges are all brown. It is

surrounded by a smooth portion of the surface.
• Paint red each triangle that has at least one red vertex. They

form the cores of a smooth regions.
• Extend the cores by recursively painting red the triangles

adjacent to a red triangle through a brown edge.
• Paint red the edges and vertices of red triangles.
• Paint blue each non-red edge joining two red vertices. These

are the chamfer edges.
• Paint green each triangle bounded by three blue edges. These

are the corner triangles where chamfers meet.

Fig. 3: Chamfers identified by Edge-Sharpener on a Marching-Cubes
generated model (top row) and on the simplified version of a laser
scanned model of Michelangelo’s David (bottom row, model courtesy
of the Digital Michelangelo Project , Stanford University). Some edges
are still gray or brown.

The six steps are illustrated in Fig. 2. Filter 1 identifies
the interior vertices of smooth regions. Filter 2 identifies
the core triangles of smooth regions. These core triangles
are incident upon at least one interior vertex. Filter 3
extends the smooth regions to include all of the triangles
that are adjacent to a core triangle by a smooth edge. Note
that we do not need to distinguish between the different
components of the smooth portion of the mesh. Filter 4
marks the edges that bound the smooth regions to ensure
that they are not mistaken for chamfer edges in step 5. Note
that these edges are not smooth. Filter 4 also identifies the
vertices that bound the smooth regions. Filter 5 identifies
the chamfer edges as those that connect vertices on the
boundary of smooth regions but do not bound a smooth
region. Note that chamfer edges may, but need not, be
smooth. Also note that some edges may still be gray and
that some brown edges may neither be part of a smooth
region nor be chamfer edges (Fig. 3). Finally, Filter 6
identifies the corner triangles that are bounded by three
chamfer edges and have all of their vertices on the
boundary of smooth regions. Thus, they are at the junction
of at least three portions of smooth regions.

5

3.2 Subdivision of the chamfer triangles
To subdivide the chamfer triangles we insert a new vertex
in the middle of each chamfer edge and in the middle of
each corner triangle. Then, we re-triangulate the resulting
polygons. We may have three cases (see Fig. 4):
• A triangle with a single chamfer edge is split in two.
• A triangle with two chamfer edges is split in three.
• A corner triangle, which has three chamfer edges and an

interior vertex is split into six triangles forming a fan around
the interior vertex.

a b c

Fig. 4: Subdivision of a chamfer triangle with one (a) two (b) or three
(c) chamfer edges.

3.3 Snapping new vertices onto sharp features
Finally, we must find the proper position for each new
vertex introduced in the middle of a chamfer edge or of a
corner triangle. We use an extrapolation of the smooth
surfaces that are adjacent to these elements, as shown in
Fig. 5 and Fig. 6 and explained below.

B L

A

Fig. 5: Re-location of a new vertex splitting a chamfer edge.

To find the position of a new vertex V inserted in a
chamfer edge E, we consider the two original vertices, A
and B, of E (see Fig. 5). We compute the weighted sum N of
the normals to all of the red triangles incident upon A,
normalize it, and define a plane P that is orthogonal to N
and passes through A. As weights, we use the angle
between the two edges of the incident triangle that meet at
A [33]. Similarly, we compute the weighted sum M of the
normals to the red triangles incident upon B, normalize it,
and define a plane Q that is orthogonal to M and passes
through B. Finally, we move V to the closest point on the
line L of intersection between planes P and Q. Specifically:

V = (A+B)/2+(h/k)H,
where h=AB•N, k=2(M•N)(AB•N)–2(AB•M),

and H=AB×(M×N)=(AB•N)M+(BA•M)N
To find the position of a new corner vertex, W, inserted

in a corner triangle with vertices A, B, and C, we proceed as
follows. We first compute the weighted sum, N, of the
normals to all of the red triangles incident upon A,
normalize it, and define a plane P that is orthogonal to N

and passes through A. Similarly, we define the plane Q
through B with normal M and the plane R through C with
normal S. Then, we move W to the intersection of planes P,
Q, and R, which is the solution of the system of three linear
equalities: W•N=A•N, W•M=B•M, W•S=C•S (see Fig. 6).

 N

M S

Fig. 6: Re-location of a new vertex splitting a corner triangle.

3.4 Dealing with degenerate situations
For simplicity, we have omitted in the previous sections the
discussion of degenerate cases. We identify them here and
explain how they are handled.

Nearly parallel planes: Such cases include situations
where the pairs of planes are parallel or when the triplets of
planes do not intersect at a single point, because their
normals are coplanar. Moreover, since the algorithm is
tailored for nearly uniform triangulations, we have chosen
to avoid the creation of edges which are longer than the
longest edge of the input mesh (see Fig. 7). Thus, if the
extrapolated position would require the creation of such a
long edge, or if the position itself is not defined because of a
linear dependency between the planes, we simply leave the
newly inserted vertex in the middle of the chamfer edge or
of the corner triangle.

a b c

d

Fig. 7: In an input model (a) the chamfer edges joining nearly parallel
surfaces (b) were subdivided without moving the new vertices (c). A
wrong model (d) would be obtained without our edge-length check.

Step features: In some cases, a portion of a triangle strip
that forms a chamfer is bordered by a concave edge on one
side and by a convex edge on the other. We detect these
situations easily by analyzing the configuration of the
triangles incident on the end-points of the chamfer edge or
triangle. We treat these cases as the ones discussed above,
and simply do not move the newly inserted vertices.

Multi-corners: The original model may have more than
three sharp edges meeting at a corner. In these cases, a
corresponding re-sampled model has a strip of chamfer
edges for each original sharp edge, and these strips meet at
a region made of two or more corner triangles. The new

6

points that split these adjacent corners (and the chamfer
edges in between) are moved to the same position,
resulting in the creation of degenerate (zero-area) triangles.
Therefore, when the sharpening is complete, it may be
necessary to eliminate some degenerate faces [9]. We have
tuned our implementation by considering as degenerate a
triangle having at least one angle smaller than 1 degree; in
this case we simply collapse the edge which is opposite to
such an acute corner and update the connectivity graph
consistently.

4 BENDING
The bending phase described in this section is particularly
beneficial when restoring curved models from a
triangulation generated by a feature insensitive sampling.

The error between a curved smooth surface and its
triangle mesh approximation can often be reduced through
subdivision. Because standard subdivision approaches
would round off the sharp features, we have developed a
new subdivision scheme that preserves the sharpness of
sharp edges, while bending their piecewise linear
approximations into smooth curves.

4.1 Tagging the sharp edges
As suggested previously [23] [30], we could attempt to
recover the sharp edges from the mesh produced with Edge
Sharpener, using a crude threshold on the dihedral angle.
Unfortunately, when the sampling is curvature-insensitive,
such an approach could mistakenly tag, as sharp, some of
the edges lying on smooth surfaces with high curvature.

c d

a b

Fig. 8: An original surface with a sharp edge is approximated by the
triangulation of a feature-insensitive sampling [a]. Filter 3bis has
detected a non-brown edge having two incident red triangles and has
tagged its vertices. Filter 3bis has also tagged a vertex having a non
manifold red neighborhood (tagged vertices are shown in green in [b]).
After the subdivision of the chamfer triangles, all of the newly inserted
vertices have been tagged (yellow vertices in [c]). Finally, all of the
edges joining two tagged vertices have been tagged as sharp (yellow
edges in [d]). Note that the vertices of the tagged edges may have
been tagged either in [b] or in [c].

To reduce the frequency of these false positives, we want
to use the results of EdgeSharpener. However, the original
version of EdgeSharpener only tags as sharp the new edges
created by subdividing chamfer triangles. It does not
explicitly tag as sharp the original edges where smooth
patches meet. Hence, we have extended EdgeSharpener to
also tag as sharp the non-smooth edges that bound two
smooth faces. These pre-existing sharp edges are the non-

smooth edges that bound two red triangles. To identify
them during EdgeSharpener, we perform the first three
EdgeSharpener filters as explained in the initial version
above. After Filter 3, we execute a new filter, say Filter 3bis,
which finds the non-brown edges with two adjacent red
triangles and tags their ending vertices. Filter 3bis also tags
all of the vertices having a non-manifold red neighborhood.
Then, we execute the remaining filters and, at the end, we
tag all of the vertices inserted by EdgeSharpener to
subdivide the chamfer triangles. Finally, we tag as sharp all
of the edges which link two tagged vertices. This process is
shown in Fig. 8.

4.2 The Bender algorithm
The Bender algorithm, introduced here, assumes that all of
the sharp edges have been identified and tagged. Note that
it also can be executed on tagged meshes that are not
necessarily produced by EdgeSharpener.

We wish to smooth the triangle mesh to bring it closer to
the original curved surface. Because we assume that the
samples (i.e vertices) lie on the original surface, we use an
interpolatory subdivision scheme. We have selected to use
a modification of the Butterfly subdivision [14], which splits
each triangle into four by inserting a new vertex in the
middle of each edge, as shown in Fig. 9.

Each newly inserted vertex p is then moved to a position
that is a linear combination of the edge’s end-points and six
neighboring vertices. The configuration of the neighbors
and their weights, which define the stencil of the
subdivision rule, are reported in Fig. 10-R1, where the
vertex p is marked by a black dot.

Fig. 9: Butterfly subdivision: an example showing how an initial triangle
mesh (on the left) is refined by a subdivision step (middle). On the
right, the limit surface is shown. The red dots indicate the vertices of
the initial triangle mesh, whose coordinates are not modified by the
subdivision process.

When repeated, the Butterfly subdivision converges to a
smooth surface everywhere, except near extraordinary
vertices, which do not have six incident triangles. The
Butterfly scheme is not defined for border edges. Both
problems have been addressed by Zorin et al. [44], who
propose to adapt the weights of the linear combination to
take into account the valence, k, of each vertex (i.e. the
number of incident edges) and the fact that some of the
neighboring edges and vertices may be on the border of the
surface. They distinguish several cases, shown in Fig. 10-
(R1-R5 and E1-E2). For each case, the position of p is
defined by a particular stencil [43]. The values of the
weights have been incorrectly reported in [43]. We have
corrected them according to [45]. The improved subdivision

7

8

guarantees that the limit surface is smooth everywhere,
including near the extraordinary vertices. Furthermore, this
scheme can handle manifold triangle meshes with
boundary. In this case, each boundary edge is subdivided
using the one-dimensional four point stencil introduced in
[15] and depicted in Fig. 10-R2, which ignores the valence
of the vertices and only makes use of the neighboring
vertices on the boundary. However, the approach of [43]
does not make provision for sharp edges, which we want to
bend into smooth curves while preserving their sharpness.

1/2 1/2

1/8

1/8

-1/16

-1/16

-1/16

-1/16

 p

 p 9/16 -1/16 9/16 -1/16

3/8 5/8

1/16

3/16

-1/16

-1/8 -1/16

 p

V

 p

W W2

Standard Butterfly stencil

Extraordinary-interior rule

1D 4-point stencil

Crease-interior rule

1/2 1/2

0

1/4 -1/8-1/8

p

Crease-crease rule 2

Crease-crease rule 1

Extraordinary-crease rule

Non-manifold crease rule

V
s0

 p

s1
s2

s3

s4

s5
s6







 ++=)4cos(

2
1)2cos(

4
11

K
j

K
j

K
s j

ππ

0,
8
1,

8
3

3,120 =−== sss

12
1,

12
5

2,10 −= ss

K = degree(V) ≠ 6

 p
1/2 0 0

1/2 0 0 V2

9/16 -1/16 9/16 -1/16

If K ≥ 5,

If K = 4,

If K = 3,









+

−•−
−•−

•−+= 1
)()(
)()(2)(2

22 WVWV
WWWVWVWV

sv

4
3

=vs

K = degree(V)+1

 p

s0

s1

sk sv
V

si

θ = π/K







 +=)2sin()2sin(

2
1)sin()sin(1 θθθθ jiji

K
s j

))2cos()(cos(4
)2sin()2sin()cos(

4
1

0 θθ
θθθ

−
−=−=

K
iiss k

))cos(1(
)sin()sin(1

θ
θθ

−
−=

K
isv

R
E
G
U
L
A
R

E
X
T
R
A
O
R
D
I
N
A
R
Y

R1

R5

R3

R4

R2 R6

E1 E2

V

Fig. 10: Stencils used by Bender. ‘p’ is the point being computed as a linear combination of the depicted neighboring vertices. All the other
possible neighbors are assumed to have zero coefficient. Sharp edges are shown in red.

Our Bender algorithm is a modification of this scheme. It
is able to smooth the mesh everywhere, while preserving
the sharpness of the tagged edges. Our modification is
limited to edges with one or both end-points bounding a
sharp edge.

4.2.1 Modified rules for sharp edges
We say that a vertex with exactly two incident sharp edges
is a manifold sharp vertex. If an edge, E, joining vertices V
and W, is tagged as sharp, we may have three
configurations:

• If both V and W are manifold sharp vertices, then we
subdivide E using the one-dimensional four-point scheme
described in [14] and depicted in Fig. 10-R2, where the sharp
edges are shown in red.

• If both V and W are non-manifold, we leave the new point in
the middle of E.

• Now consider the case where only V is non-manifold. Let F
be the sharp edge incident at W and different from E. We
reflect F on the other side of E. To do so, we consider the
plane P containing both E and F. On P, we compute the
mirror F’ of F with respect to the bisector axis of E. Then we
consider F’ as being the only other sharp edge incident at V
and apply the four-point scheme (see Fig. 11-R6).

4.2.2 Other modified subdivision rules
When subdividing an edge with only one end-point, say V0,
on a sharp edge, we perform a topological cut along all the
sharp edges incident upon V0. Specifically, if V0 has n>1
incident sharp edges, we create n–1 copies of V0, say
V1…Vn, and duplicate all of the sharp edges meeting at V0.
This process only involves topological operations and is
illustrated in Fig. 11.

When V0 is the dead-end of a chain of sharp edges (n=1),
we do not duplicate any vertex or edge, and simply
consider V0 as if it were not on a sharp edge. In all the other
cases, after the cut, the vertex V0 becomes a boundary
vertex. According to [43] and Fig. 10, we apply the suitable
boundary rule and close the mesh back to its original
configuration.

Finally, if a non-sharp edge has both end points on a

tagged edge, we perform the cut for both vertices, apply the
proper boundary rule, and close the mesh back.

V0 V0 V2

V1

Fig. 11: Example of topological cut along sharp edges (red on the left).
In the image, V0, V1 and V2 have been displaced to show the
topological hole.

Note that if Bender is to be used more than once (as in
the examples shown in Fig. 12), it is necessary to propagate
the sharp-edge markings throughout the subdivision. Thus,
when splitting a sharp edge, we tag as sharp the two new
edges connecting the old end-points of the edge with the
new vertex. Also, note that Bender can correctly handle
manifold triangle meshes with both sharp edges and
boundary, as shown in Fig. 12.

Bender

Bender

Fig. 12: Top row: an example showing the behavior of Bender alone on
a mesh with both boundary and sharp edges (shown in red on the
leftmost model). Bottom row: another example showing the bending
around the dead-end of a sharp edge.

5 RESULTS AND DISCUSSION
We have tested Sharpen&Bender extensively in conjunction
with the SwingWrapper compression algorithm [5]. In
order to reduce the number of bits to encode the vertex
locations, SwingWrapper performs a remeshing of an
original dense triangle mesh, constraining the position of
each vertex to lie on a circle defined by two previously
created neighboring vertices. Specifically, SwingWrapper
grows the new mesh by attaching one new triangle at a
time following an EdgeBreaker like traversal order [38][39].
When the new triangle has a new tip vertex, the location of
this tip is computed as the intersection with the original
surface of a circle orthogonal to the gate (edge where the
new triangle is attached). Therefore, the two new edges
have a prescribed length L. This scheme allows one to
encode the location of the tip vertex using a few bits that
quantize the dihedral angle at the gate. The sequence of
quantized angles is further compressed using an arithmetic

coder. The SwingWrapper compression is lossy, and most of
the discrepancy between the original and the re-sampled
models is concentrated near the sharp edges and corners,
and near regions of high curvature. The connectivity of the
meshes produced by SwingWrapper is encoded using
modified versions of the EdgeBreaker compression scheme.
In [5], we report very aggressive compression ratios and
show that the error is concentrated around sharp features.

We have also tested EdgeSharpener with and without
Bender on a number of models generated through the
Marching-Intersections algorithm [37], which performs a
Marching-Cubes-like [32] re-tiling of an input mesh, and
through surface reconstruction [3] applied on data which
simulates the typical patterns used in laser sampling.

Original
Shape

Remeshed
through

L∞ and L2
Distortions

After
EdgeSharpen

After
Sharp.&Bend

Proc.
Time

SwingW rapper

31554 faces

0.41%

0.054%

0.18%

0.031%

0.16%

0.021%

1.94

Reconstruction

11256 faces

0.67%

0.073%

0.26%

0.053%

0.19%

0.019%

0.61

M arch. Inters.

778 faces

0.35%

0.049%

0.19%

0.017%

0.14%

0.008%

0.04

M arch. Inters.

20121 faces

0.89%

0.090%

0.37%

0.014%

0.39%

0.006%

1.01

SwingW rapper

9668 faces

0.94%
0.11%

0.23%
0.08%

0.12%

0.013%

2.34

Reconstruction

7548 faces

0.81%
0.10%

0.35%

0.041%

0.31%

0.023%

0.49

Original mesh

13915 faces

-
-

-
-

-
-

0.70

Fig. 13: Experimental results showing the reduction of the L∞ and L2
distortions due to both EdgeSharpener and Bender. The number in the
second column counts the faces of the remeshed models. All the errors
are expressed as a percentage of the model's bounding box diagonal;
errors are missing for the 'face' model because we did not have an
original surface to compare with. In the last column the total running
time is reported (in seconds). In all of the tests Bender was run once,
except for the 'hand' for which two iterations were performed.

We have found that in all the cases tested, when the
original shape was sampled with a sufficiently high
density, most of the sharp features can be completely
recovered, while the parts of the mesh that correspond to
regions of the original model without sharp features are not
modified by Edge-Sharpener, and correctly smoothed by
Bender (see Fig. 17).

We have observed that Sharpen&Bend significantly
reduces the error between the original shape and the
remeshed one (Fig. 13). Consider two extreme cases: 1)
when the original shape has no sharp edges EdgeSharpener
has no benefit and 2) when all the faces of the original
shape are flat, Bender has no benefit. Between these
extreme cases, the error reduction varies depending on the
shape and accounts to both EdgeSharpener and Bender. If
the input model interpolates a dense enough sampling,
EdgeSharpener is expected to have a strong impact on the

9

L∞ distortion, while Bender will mainly reduce the L2 error.
EdgeSharpener, however, will also have an impact on the
L2 distortion, whose reduction may become significant if
the original shape has only flat faces separated by sharp
edges. Furthermore, if the input model was obtained from
too coarse a sampling, EdgeSharpener may miss some
sharp edges. In such a case, Bender will round these edges
and may introduce a slight increase in the L∞ distortion.
Fig. 13 shows the results of our experiments which clearly
agree with the above considerations. Errors have been
computed through the publicly available Metro tool [11],
except for the model of the face for which we did not have
an original surface to compare with. The remeshed versions
of the test models, along with their Sharpen&Bend
improved versions, are shown in Fig. 17 and Fig. 18.

To analyze how sampling density affects their benefits,
we have applied Edge-Sharpener and Bender to models of
increasing resolution produced by SwingWrapper. As
indicated in Fig. 14, the relative L2 error reduction remains
considerable at all scales. The top-left part of the figure
includes an additional curve relative to the PGC coder [28].
Note that PGC uses a feature-sensitive remeshing engine
[30], and thus outperforms SwingWrapper on models with
sharp features. The error reduction due to Sharpen&Bend,
however, widely compensate for this advantage.

0 1 2 3 4 8 5
0

2

4

6

8

bits/v

L2

SwingWrapper
EdgeSharpener

0 1 2 3 4 8 5
0

2

4

6

8

bits/v

L2
Initial Model

EdgeSharpener

0 1 2 3 4 8 5
0

2

4

6

8

bits/v

L2
Initial Model

EdgeSharpener

0 1 2 3 4 8 5
0

2

4

6

8

bits/v

L2
Initial Model

EdgeSharpener

PGC

Sharpen&Bender Sharpen&Bender

Sharpen&Bender Sharpen&Bender

Fig. 14: Impact of EdgeSharpener and Bender on the rate-distortion
curves of the SwingWrapper compressor. Bit-per-vertex rates are
relative to the # of vertices of the original model. Errors are expressed
in units of 10-4 of the bounding-box diagonal.

We conclude that the effectiveness of the proposed
method is not restricted to sharply uniform meshes. For
example, EdgeSharpener correctly restores the sharp
features of typical meshes generated through interpolation
of laser-captured point sets, or through iso-surface
polygonization procedures which exhibit a fair amount of
variation in edge-length. Though they are not uniform, in
fact, it is important to note that in these meshes the edge
length is typically bounded (i.e. cell’s diagonal in the
Marching Cubes approach), therefore our detection of
degenerate cases still offers good results.

Finally, we have found that small quantities of noise do
not prevent EdgeSharpener to correctly restore sharp edges.

Modern, well-calibrated laser scanners produce absolutely
acceptable data. Clearly, if the amount of noise becomes
comparable with the inter-sampling spacing, its influence
on the dihedral angles prevents the algorithm to identify
some chamfer elements, and some sharp edges may be
missed. In [4] an example is depicted showing how the
sharpening quality degrades as the noise increases.
Furthermore, for such heavily perturbed data an
interpolating subdivision is not appropriate, and it is
preferable to follow the EdgeSharpening by a feature-
preserving smoothing [16][26] or by an approximant
subdivision of the tagged mesh [23].

5.1 Limitations
Edge-Sharpener can miss sharp features that are smaller
than the inter-sample spacing and may produce sharp
edges where the original model has a feature that has been
smoothed with a small-radius blend (Fig. 16). There is
simply not enough information in the sampling to recover
such small features or blends.

Original

Fig. 15: Reconstruction of a sharp feature which blends smoothly onto
a flat surface. The “ripple” of the strip of chamfer triangles prevented
the red region to expand on the chamfer.

Also, in extremely rare cases, the alias corresponding to
a feature that blends smoothly into a flat area may be
painted red, preventing the detection of some “desired”
chamfer triangles. This situation, however, may happen
only if the strip of such triangles is not aliased, which is
very improbable in practical cases. Fig. 15, for example,
shows the correct reconstruction of such a blended feature
from a retiled model having the typically “rippled” strips of
chamfer triangles. On the other hand, if the same model
was sampled through a grid exactly aligned with its sharp
edges, the blended feature would not have been recovered
because its corresponding strip of chamfer triangles would
have been smoothly blended onto the flat face, and the red
region would have expanded along the strip through
brown edges.

Finally, if an original model has a smooth face that is
thinner than 3 times the inter-sample spacing, Edge-
Sharpener may not be able to identify a sufficient number
of smooth vertices for it and hence may not be able to
recover the sharp features which bound that face. As for the
unwanted sharpening of small radius blends, this problem
is a consequence of an insufficient sampling density, and
may be solved by using a denser sampling.

Unfortunately, we cannot provide measures of sampling
density that guarantee that EdgeSharpener does not miss

10

11

any feature. Sufficient sampling conditions for non-smooth
geometry are hard to define [13] and, to the best of our
knowledge, their formalization is still an open problem.

Fine
Mesh

Chamfer Detection Chamfer Split

Original Model

Coarse
Mesh

Bending

Fig. 16: Unwanted creases may be produced if an original surface has blends whose radius is smaller than the inter-sample spacing (top row).
If the sampling step is small compared to the blend radius, the blends are not modified by Edge-Sharpener (bottom row), while they are
smoothed as expected by Bender.

5.2 Performance
Our experiments on a variety of meshes indicate that Edge-
Sharpener is extremely fast and robust. For example, the
sharpening of the models presented in this paper took less
than 0.4 seconds each on a standard PC equipped with a
1.7Ghz CPU. The performance of Bender is comparable
with the one of a typical subdivision scheme. Our
implementation, which is not particularly optimized,
subdivides an average of about 22000 triangles per second.
Precise timings for the combined Sharpen&Bend algorithm
are shown in Fig. 13, where each model was subdivided
once, except for the hand which was subdivided twice.

6 CONCLUSIONS
We have presented a simple, automatic, and efficient edge-
sharpening procedure designed to recover the sharp
features that are lost by reverse engineering or by
remeshing processes that use a non-adaptive sampling of
the original surface. Also, we have introduced (1) a new
automatic tagging approach which marks the sharp edges
and (2) a Bender modified subdivision scheme that smooths
the surface and preserves the sharpness of tagged edges
while bending chains of them into smooth curves. We have
run numerous tests on models coming from uniform
remeshing, marching-cubes iso-surface generation, and
surface reconstruction from nearly uniform clouds of
points. In all of the cases, in addition to the correct
reconstruction of sharp features, we have observed that the
distortion between the mesh and the original model was
significantly reduced by our sharpening process, while the
parts of the mesh not corresponding to sharp features in the
original model were not modified. Moreover, when the
original model has curved areas, the application of Bender
further decreases the distortion.

ACKNOWLEDGMENTS
This work is part of the bilateral research agreement
“Surface Analysis” – GVU/GATECH and IMATI-GE/CNR.
IMATI-GE was partially supported for this work by the
national FIRB project MACROGeo and by the EU Project
AIM@SHAPE (Contract # 506766). Rossignac's work on this
project was partly supported by a DARPA/NSF CARGO
grant #0138420. The authors thank all the members of the
Shape Modeling Group of the IMATI-GE/CNR and the
reviewers for their helpful advice. Thanks are due to Denis
Zorin for providing the corrected coefficients of the
extraordinary-crease rule.

REFERENCES
[1] Adamy, U., Giesen, J. and John, M. 2000. New techniques for

topologically correct surface reconstruction. In Proceedings of
IEEE Visualization '00, 373–380.

[2] Amenta, N., Choi, S. and Kolluri, R. 2001. The power crust. In
Proceedings of the 6th ACM Symposium on Solid Modeling and
Applications, 249-260.

[3] Attene, M. and Spagnuolo, M. 2000. Automatic surface
reconstruction from point sets in space. Computer Graphics Forum
19, 3 (Proceedings of Eurographics '00), 457-465.

[4] Attene, M., Falcidieno, B., Rossignac, J. and Spagnuolo, M. 2003.
Edge-Sharpener: Recovering sharp features in triangulations of
non-adaptively re-meshed surfaces. In Proceedings of the 1st
Eurographics Symposium on Geometry Processing, 63-72.

[5] Attene, M., Falcidieno, B., Spagnuolo, M. and Rossignac, J. 2003.
SwingWrapper: Retiling triangle meshes for better EdgeBreaker
compression. ACM Transactions on Graphics 22, 4, 982-996.

[6] Biasotti, S., Mortara, M. and Spagnuolo, M. 2000. Surface
Compression and Reconstruction Using Reeb Graphs and Shape
Analysis. In Proceedings of the Spring Conference on Computer
Graphics (SCCG '00), 174-185.

[7] Biermann, H., Martin, I.M., Zorin, D. and Bernardini, F. 2001.
Sharp Features on Multiresolution Subdivision Surfaces. In
Proceedings of Pacific Graphics ’01, 140-149.

[8] Bloomenthal, J. 1988. Polygonization of implicit surfaces.

12

Computer Aided Geometric Design 5, 341-355.
[9] Botsch, M. and Kobbelt, L. P. 2001. A Robust Procedure to

Eliminate Degenerate Faces from Triangle Meshes. In Proceedings
of Vision, Modeling and Visualization (VMV ‘01).

[10] Cheng, S. W. and Dey, T. K. 1999. Improved construction of
Delaunay based contour surfaces. In Proceedings of the ACM
Symposium on Solid Modeling and Applications, 322-323.

[11] Cignoni, P., Rocchini, C. and Scopigno, R. 1998. Metro:
measuring error on simplified surfaces. Computer Graphics Forum
17, 2 (Proceedings of Eurographics ’98), 167-174.

[12] Cong, G. and Parving, B. 2001. Robust and Efficient Surface
Reconstruction from Contours. The Visual Computer 17, 199-208.

[13] Dey, T. K. and Wenger, R. 2001. Reconstructing curves with
sharp corners. Computational Geometry Theory Applications 19, 89-
99.

[14] Dyn, N., Gregory, J. and Levin, D. 1990. A butterfly subdivision
scheme for surface interpolation with tension control. ACM
Transactions on Graphics 9, 2, 160-169.

[15] Dyn, N., Gregory, J. and Levin, D. 1987. A four-point
interpolatory subdivision scheme for curve design. Computer
Aided Geometric Design 4, 257-268.

[16] Fleishman, S., Drori, I. and Cohen-Or, D. 2003. Bilateral Mesh
Denoising. In Proceedings of ACM SIGGRAPH '03, 950-953.

[17] Garland, M. and Heckbert, P.S. 1997. Surface Simplification using
Quadric Error Metrics. In Proceedings of ACM SIGGRAPH '97,
209-216.

[18] Giesen, J. and John, M. 2002. Surface reconstruction based on a
dynamical system. Computer Graphics Forum 21, 3 (Proceedings of
Eurographics ‘02), 363-371.

[19] Gumhold, S., Wang, X. and Macleod, R. 2001. Feature Extraction
from Point Clouds. In Proceedings of the 10th International Meshing
Roundtable, 293-305.

[20] Guskov, I., Vidimce, K., Sweldens, W. and Schröder, P. 2000.
Normal Meshes. In Proceedings of ACM SIGGRAPH '00, 95-102.

[21] Guy, G. and Medioni, G. 1997. Inference of Surfaces, 3D Curves
and Junctions from sparse, noisy, 3D data. IEEE Transactions on
Pattern Analysis and Machine Intelligence 19, 11, 1265-1277.

[22] Hoppe, H. 1996. Progressive Meshes. In Proceedings of ACM
SIGGRAPH '96, 99-108.

[23] Hoppe, H., Derose, T., Duchamp, T., Halstead, M., Jin, H.,
Mcdonald, J., Schweitzer, J. and Stuetzle, W. 1994. Piecewise
smooth surface reconstruction. In Proceedings of ACM SIGGRAPH
'94, 295-302.

[24] Hubeli, A. and Gross, M. H. 2001. Multiresolution feature
extraction from unstructured meshes. In Proceedings of IEEE
Visualization '01, 16–25.

[25] Hubeli, A., Meyer, K. and Gross, M. H. 2000. Mesh Edge
Detection. In Proceedings of the Workshop Lake Tahoe (Lake Tahoe
City, California, USA).

[26] Jones, T., Durand, F. and Desbrun, M. 2003. Non-Iterarive,
Feature-Preserving Mesh Smoothing. In Proceedings of ACM
SIGGRAPH '03, 943-949.

[27] Ju, T., Losasso, F., Schaefer, S. and Warren, J. 2002. Dual
Contouring of Hermite Data. In Proceedings of ACM SIGGRAPH

’02, 339-346.
[28] Khodakovsky, A., Schröder, P. and Sweldens, W. 2000.

Progressive Geometry Compression. In Proceedings of ACM
SIGGRAPH ’00, 271-278.

[29] Kobbelt, L. P., Botsch, M., Schwanecke, U. and Seidel, H-P. 2001.
Feature Sensitive Surface Extraction from Volume Data. In
Proceedings of ACM SIGGRAPH '01, 57-66.

[30] Lee, A., Sweldens, W., Schröder, P., Cowsar, L. and Dobkin, D.
1998. MAPS: Multiresolution Adaptive Parameterization of
Surfaces. In Proceedings of ACM SIGGRAPH ’98, 95-104.

[31] Loop, A. 1987. Smooth Subdivision Surfaces based on Triangles.
Master’s thesis, University of Utah, Department of Mathematics.

[32] Lorensen, W. and Cline, H. 1987. Marching Cubes: a high
resolution 3D surface construction algorithm. In Proceedings of
ACM SIGGRAPH '87, 163-169.

[33] Mokhatarian, F., Khalili, N. and Yuen, P. 1998. Multi-Scale 3-D
Free-Form Surface Smoothing. In Proceedings of the British Machine
Vision Conference, 730-739.

[34] Ohtake, Y. and Belyaev, A.G. 2002. Dual/Primal Mesh
Optimization for Polygonized Implicit Surfaces. In Proceedings of
the ACM Symposium on Solid Modeling and Applications, 171-178.

[35] Ohtake, Y., Belyaev, A.G. and Pasko, A. 2001. Dynamic Meshes
for Accurate Polygonization of Implicit Surfaces with Sharp
Features. In Proceedings of Shape Modeling International (SMI '01),
74-81.

[36] Patané, G. and Spagnuolo, M. 2002. Multi-resolution and Slice-
oriented Feature Extraction and Segmentation of Digitized Data.
In Proceedings of the ACM Symposium on Solid Modeling and
Applications, 305-312.

[37] Rocchini, C., Cignoni, P., Ganovelli, F., Montani, C., Pingi, P. and
Scopigno, R. 2001. Marching Intersections: an efficient
resampling algorithm for surface management. In Proceedings of
Shape Modeling International (SMI ’01), 296-305.

[38] Rossignac, J. 1999. Edgebreaker: Connectivity compression for
triangle meshes. IEEE Transactions on Visualization and Computer
Graphics 5, 1, 47-61.

[39] Rossignac, J. 2001. 3D Compression made simple: EdgeBreaker
with Wrap&Zip on a Corner-Table. In Proceedings of Shape
Modeling International (SMI ’01), 278-283.

[40] Szymczak, A., King, D. and Rossignac, J. 2002. Piecewise Regular
Meshes. Graphical Models 64, 3-4, 183-198.

[41] Vorsatz, J., Rössl, C., Kobbelt, L.P. and Seidel, H.-P. 2001. Feature
Sensitive Remeshing. Computer Graphics Forum 20, 3 (Proceedings
of Eurographics ‘01), 393-401.

[42] Watanabe, K. and Belyaev, A.G. 2001. Detection of Salient
Curvature Features on Polygonal Surfaces. Computer Graphics
Forum 20, 3 (Proceedings of Eurographics ‘01), 385-392.

[43] Zorin, D. and Schröder, P. 2000. Subdivision for Modeling and
Animation. SIGGRAPH '00 Course Notes, Course #23, 23-28 July,
New Orleans, Louisiana, USA.

[44] Zorin, D., Schröder, P. and Sweldens, W. 1996. Interpolating
subdivision for meshes with arbitrary topology. In Proceedings of
ACM SIGGRAPH '96, 189-192.

[45] Zorin, D. 2003. Private Communication.

Fig. 17: Some examples of models improved through Sharpen&Bend. Corresponding numerical results are reported in Fig. 13. Original models
courtesy of INPG (casting), Cyberware (ball_joint), H. Hoppe (fandisk), Y. Ohtake (octa_flower), Minolta (face) and Far Field Technology (hand).

a b

Fig. 18: The fandisk model was slightly tilted (30 degrees around the x-axis) before being re-sampled through a regular grid aligned with the
coordinate frame (a). Although the sharp edges are not aligned with the sampling pattern, EdgeSharpener correctly reconstructed them. The final
model improved by Sharpen&Bend is shown in (b).

