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Sharpen&Bend: Recovering curved sharp  
edges in triangle meshes produced by feature-

insensitive sampling 
M. Attene, B. Falcidieno, J. Rossignac and M. Spagnuolo 

Abstract - Various acquisition, analysis, visualization and compression approaches sample surfaces of 3D shapes in a uniform 
fashion, without any attempt to align the samples with sharp edges or to adapt the sampling density to the surface curvature. 
Consequently, triangle meshes that interpolate these samples usually chamfer sharp features and exhibit a relatively large error in 
their vicinity. We present two new filters that improve the quality of these re-sampled models. EdgeSharpener restores the sharp 
edges by splitting the chamfer edges and forcing the new vertices to lie on intersections of planes extending the smooth surfaces 
incident upon these chamfers.  Bender refines the resulting triangle mesh using an interpolating subdivision scheme that preserves 
the sharpness of the recovered sharp edges while bending their polyline approximations into smooth curves. A combined 
Sharpen&Bend post-processing significantly reduces the error produced by feature-insensitive sampling processes. For example, 
we have observed that the mean-squared distortion introduced by the SwingWrapper remeshing-based compressor can often be 
reduced by 80% executing EdgeSharpener alone after decompression. For models with curved regions, this error may be further 
reduced by an additional 60% if we follow the EdgeSharpening phase by Bender. 

Index Terms: I.3.5 [Computer Graphics]: Computational Geometry and Object Modeling – Boundary representations, Geometric 
algorithms, languages and systems 

1 INTRODUCTION 
The surfaces of 3D models are often represented by 
approximating triangle meshes. Their triangles are the 
simplest form of interpolant between surface samples, 
which may have been acquired with a laser scanner 
[2][3][18], computed from a 3D scalar field resolved on a 
regular grid [8][32], or identified on slices of medical data 
[10][12]. Most acquisition techniques restrict each sample to 
lie on a specific line or curve whose position is completely 
defined by a pre-established pattern. For example, a laser-
scanner measures distances along a family of parallel or 
concentric rays that form a regular pattern or grid. One 
may also argue that an iso-surface extraction uses three 
such patterns, aligned with the three principal directions. 
Because the pattern of these rays or stabbing curves is not 
adjusted to hit the sharp edges and corners of the model, 
almost none of the samples lie on such sharp features. 
Therefore, the sharp edges and corners of the original shape 
are removed by the sampling process and replaced by 
irregularly triangulated chamfers. The error between the 
original shape and the approximating triangle mesh may be 
decreased by using a finer sampling step. But, over-
sampling will increase significantly the number of vertices, 
and thus the associated transmission and processing cost. 

Furthermore, as observed by Kobbelt et al. [29], the 
associated aliasing problem will not be solved by over-
sampling, since the surface normals in the reconstructed 
model will not converge to the normal field of the original 
object. Similar aliasing artifacts can be observed on models 
produced by surface remeshing, which is the basis of three 
of the most effective compression techniques published 
recently [5][20][1]. All three methods create a new mesh 
that approximates the original one. Vertices of the new 
mesh are placed on the original surface or at quantized 
locations near the surface, so that their position can be 
predicted more accurately and encoded with fewer bits. To 
reduce the encoding of each vertex to a single parameter, 
the vertices of the resampled mesh are restricted to each lie 
on a specific curve, which is completely defined by 
previously processed neighboring vertices. Unfortunately, 
almost none of the new vertices fall on sharp edges or 
corners. As a consequence, the sharp features are not 
captured in the new mesh and a significant error between 
the original surface and its approximating triangle mesh 
occurs near these sharp features. To reduce this error, one 
may choose to use a feature-sensitive remeshing process 
[30], which attempts to place the samples on the sharp 
edges and corners of the original model. Unfortunately, this 
solution requires a more verbose representation of the 
samples, which are no longer restricted to each lie on a 
specific curve and hence must be encoded using 3 
coordinates each. 
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Fig. 1: An original model (a) was re-meshed through a feature-insensitive algorithm (b). The sharp edges and corners were restored by
EdgeSharpener (c). Then, Bender faired the smooth regions without rounding off the sharp features reconstructed by EdgeSharpener (d).
For each model, the maximum distance from the original surface (Emax) and the mean-squared distortion (L2) are reported. All the values are
percent of the bounding-box diagonal. 

insensitive retiling while reducing the approximation error, 
we have developed the EdgeSharpener approach. It 
automatically identifies the chamfers and replaces them 
with refined portions of the mesh that more accurately 
approximate the original shape, restoring a piecewise linear 
approximation of the sharp edges. After the sharp edges 
have been restored by EdgeSharpener, the error between 
the triangle mesh and the original model is distributed 
more uniformly and accounts for the difference between 
the original curved surface and its piecewise-linear 
approximation. When the original surface is smooth 
everywhere, the error may be further reduced by 
subdividing the approximating triangle mesh. An 
interpolating subdivision process [14][44] may be used to 
refine the triangle mesh globally, bending the triangles to 
smooth the surface at the edges and vertices. Unfortunately, 
when the original model contains sharp edges, such a 
bending process would round or blend the sharp edges 
restored by EdgeSharpener, and hence would increase the 
error, annihilating the benefits achieved by EdgeSharpener. 
Considering sharp edges as if they were boundaries, as 
suggested in [44], is not sufficient for retaining corners and 
sharp edges with dead-ends. Thus, we introduce here a 
new approach, called Bender, which preserves the 
sharpness of the features restored by EdgeSharpener, while 
bending them so that they form smooth curves between 
sharp corners. For edges that are not sharp and not adjacent 
to a sharp edge, Bender performs a modified Butterfly 
subdivision [43][44]. For other edges, we introduce new 
subdivision rules, which make it possible to properly refine 
sharp corners, sharp edges, and also smooth edges that 
connect to sharp features. The benefits of combining Edge-
Sharpener and Bender (into a filter that we call 
Sharpen&Bend) are illustrated in Fig. 1.  

A significant number of publications have been focused 
on identifying sharp features in a 3D model [24][25], even 
in the presence of noise. More recently, solutions were 
proposed for maintaining sharp features during remeshing 
[29][41]. In both cases, the features to be extracted or 
preserved are present in the model. In contrast to this body 
of previous work, our solution recovers sharp features in an 
aliased model, from which they have been removed by 
feature-insensitive retiling. Our edge-sharpening process 
works well for meshes generated through a variety of 
uniform sampling schemes and does not introduce 

undesirable side effects away from sharp features. 
The above considerations reveal the importance of 

Sharpen&Bend for post-processing laser-digitized models. 
Most surface reconstruction approaches, in fact, are not able 
to correctly reconstruct sharp features. Moreover, while 
sufficient sampling conditions have been studied for 
smooth 3D objects [2], a guaranteed-quality reconstruction 
of surfaces with sharp features has remained a challenge, 
even in the 2D case [13]. 

1.1 Original contributions 
A preliminary description of EdgeSharpener was first 
introduced in a conference publication [4]. In this article, 
however, a more thorough analysis of the state of the art is 
presented, along with a deeper investigation of the results 
and limitations of the method. Moreover, extensions to the 
original algorithm are introduced in order to tag sharp 
edges while reconstructing them. For non-adaptively 
sampled surfaces, this approach is more accurate than 
typical methods based on a threshold of the dihedral angle. 

Here we also introduce Bender, which uses novel rules 
to maintain the sharpness of tagged edges while 
subdividing the mesh. We show that to properly handle 
sharp edges which are not closed 1-manifold curves it is not 
sufficient to treat them as if they were boundary curves, 
and hence we introduce novel special rules. 

Most important, this paper proposes a new all-in-one 
black box to improve non-adaptively (re)sampled meshes. 
We show that, for a variety of popular re-meshed models, 
Sharpen&Bend significantly decreases their distortion with 
respect to the corresponding original shapes. 

2 RELATED WORK 
Here, we successively discuss approaches to identify 
features in unstructured data (scattered points), partially 
structured data (contours or profiles), and structured data 
(polygonal meshes). Then, we discuss feature-sensitive 
polygonization, re-tiling, smoothing, and subdivision 
approaches that preserve sharp features. 

2.1 Identifying sharp features in unstructured point 
clouds 

When a scattered point sampling of a surface is sufficiently 
dense, sharp features may be inferred by analyzing the 
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neighborhood of each point. This analysis may be 
performed after a triangle mesh has been reconstructed [1] 
or directly from a point cloud [19], by first organizing it 
through a neighbor graph, then evaluating the flatness of 
the neighbors of each point, and finally extracting an 
optimized sub-graph spanning non-flat vertices. Even after 
pruning, the edges of that subgraph often form zig-zag 
patterns, because they connect input samples on opposite 
sides of sharp features. 
Gumhold et al. propose to smooth the zig-zags by fitting 
low degree splines [19]. The resulting curves are likely to lie 
on chamfers, rather than on the intersections of extrapolated 
surfaces. For instance, if the original solid had a convex 
sharp edge, the chamfer produced by a feature-insensitive 
sampling would cut through the solid. The spline 
approximation would lie on the chamfer and hence inside 
the solid, rather than close to the original sharp edge. 
Perceptual grouping rules, based on surface normals, have 
been used to infer smooth surface patches [21]. Sharp 
features are recovered as intersections of adjacent patches. 
When surface normals are not provided, the method 
estimates them at each sample from the locations of 
neighboring samples. Hence, normals at samples near 
sharp features are polluted by neighbors on other patches. 
Polluted normals lead to errors in the estimation of sharp 
features. 

The two approaches described above work well for 
dense point clouds. The Edge-Sharpening approach 
proposed in this paper extends sharp feature recovery to 
cases where the vertices of the input triangle mesh are 
sparse. Moreover, the sharp edges recovered by our 
method lie precisely on the intersections of the estimated 
incident smooth patches. 

2.2 Recovering sharp features in scanned data sets  
In most 3D data acquisition processes, the cloud of points 
captured by a scanner is organized as uniformly spaced 
samples along a series of nearly parallel rows. The spacing 
of the rows and of the points along a row is uniform in the 
scanner’s parameter space (an angle that controls the 
orientation of the laser beam), but not in terms of Euclidean 
distance. Sharp features are typically extracted by detecting 
curvature extrema along each row and by matching them 
between successive rows [6]. Similarly, if the points are 
known to be captured along straight profiles, as in typical 
bathymetries, it is possible to join close vertices of adjacent 
profiles into feature lines by analyzing, and possibly 
matching, the shape of their neighborhood along the profile 
[36]. 

Clearly, one could adapt the above approaches to 
triangle meshes by computing regular cross-sections and 
doing the 1-D analysis to find matching points. However, 
the cross-sections will typically not go through the sample 
points of the mesh being swept and hence would add 
sampling noise and reduce the reliability of the approach.  

2.3 Recovering sharp edges in Triangle Meshes 
In most situations, surface samples are sparse and the 
surface that interpolates them is defined by a 
triangle/vertex incidence graph. In these cases, the 
additional information given by the connectivity graph lead 
to significantly better sharp-edge recovery results when 
compared to methods dealing with sparse clouds of 
unstructured points. In [24], for example, a method is 
described for extracting a multi-resolution organization of 
sharp edges from a triangle mesh. The method is based on 
the assignment of a weight to each edge, so that the weight 
is proportional to the dihedral angle, or to some measure of 
the dihedral angle which uses a bigger support. Then, the 
heaviest edges are used to form patches of the surface 
which are thinned through a skeletonization process. Since 
this process may become slow for dense meshes with many 
sharp features, the input triangulation is first turned into a 
progressive mesh [22], and the feature extraction operates 
on the coarsest mesh. Higher resolution features are 
obtained by inverting the edge-contractions through vertex-
splits, as described in [22], while keeping track of the 
features. This approach, however, may result in the 
identification of a set of lines corresponding to small radius 
blends in the input model. The use of curvature extrema 
[42] suffers from the same limitation. 

2.4 Feature sensitive (re)meshing 
Feature sensitive sampling techniques have been mainly 
developed for iso-surfaces and for polygonal meshes. When 
the model being sampled is an iso-surface and the resulting 
model interpolates the samples through a polygonal mesh, 
the process is called feature sensitive meshing, tiling, or 
polygonization. In the particular case where the input model 
is already a triangle mesh, the process is called feature 
sensitive re-meshing or re-tiling. 

The loss of sharp features during the polygonization of 
iso-surfaces has been addressed in [34][35], where the 
standard marching-cubes algorithm is improved by 
optimizing the location of sample points so as to snap some 
of them onto sharp features. In [34], the initial mesh 
produced by marching-cubes is optimized by forcing its 
triangles to become tangent to the iso-surface. Such a 
constraint automatically eliminates the chamfers by moving 
each of their triangles to either one or the other side of the 
sharp edge. Similarly, in [35] each vertex is iteratively 
moved so that the normals at the triangles incident to the 
vertex converge to the normals of the underlying iso-
surface. In a similar fashion, when remeshing an original 
triangulation, the aliasing problem may be avoided by 
snapping some of the evenly distributed vertices to sharp 
feature lines, as proposed in [41].  

During the triangulation of an iso-surface, an extended 
marching cubes (EMC) algorithm [29] derives vertex 
normals from the original scalar field and uses them to 
decide whether a voxel contains a sharp feature. If so, 
additional vertices are created in the voxel and placed on 
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intersections between planes defined by the vertices and 
their normals.  

This EMC approach was subsequently improved in [27], 
enabling it to accurately polygonize models with sharp 
features using an adaptive subdivision of the space (i.e. an 
octree), with the result of obtaining polygonal models with 
less faces.  

These feature-sensitive surface triangulation approaches 
exploit information about the original surface. In contrast, 
the EdgeSharpener solution proposed here operates on a 
triangle mesh produced by a feature-insensitive sampling 
and yet is able to restore most of the sharp features 
automatically, without additional information. One may 
argue that an application of the EMC to a polygonal mesh 
may be used to infer and hence reconstruct the sharp 
features. In [29], such an application (i.e. a remeshing) is 
discussed and, in fact, it is useful to improve the quality of 
meshes having degenerate elements or other bad 
characteristics. In some cases, the information at the edge-
intersections makes it possible to reconstruct sharp features 
in an Edge-Sharpener like manner. For example, if a cell 
contains an aliased part that does not intersect the cell’s 
edges, the normal information at the intersections is used to 
extrapolate planes and additional points are created on the 
inferred sharp feature. If, on the other hand, the cell’s edges 
do intersect the aliased part, the normal information 
becomes noisy, and nothing can be predicted about any 
possible feature reconstruction. In contrast, our approach 
for the construction of the extrapolated planes makes 
EdgeSharpener less sensitive to such problems. Moreover, 
remeshing the whole model through the EMC approach 
can introduce an additional error on the regions without 
sharp features. Conversely, the local modification we 
propose only affects the aliased zones by subdividing only 
the triangles that cut through the original solid (or through 
its complement) near sharp edges. 

2.5 Feature preserving subdivision and smoothing 
The problem of preserving sharp features during the 
subdivision of polygonal surfaces has been tackled in [23], 
where the authors use a modification of the Loop’s 
subdivision scheme [31] to improve the quality of the 
results of their surface reconstruction algorithm.  In their 
approach, after a coarse reconstruction which interpolates 
the input point cloud with a triangle mesh, edges of the 
mesh are tagged as sharp if their dihedral angle exceeds a 
threshold or if they lie on the boundary. Then, the mesh is 
used as the input to a subdivision  process that generates a 
piecewise smooth subdivision surface fitted to the data 
through an iterative optimization process. The optimization 
computes an approximation of some limit points of the 
surface and transforms the base domain so that these points 
best fit the input data with respect to an energy function. 
All the modifications applied to the base domain preserve 
the tagged edges. For example, if a tagged edge is split, 
then the resulting two edges connecting the old end-points 

with the newly inserted vertex are tagged as well. The 
result of this process is a tagged base domain which can be 
subdivided through a modification of the Loop’s 
subdivision scheme which preserves the tagged features. 
Since the subdivision scheme is not interpolating, a trade-
off between conciseness and fit to the data is necessary. 

In a different approach, when the sharp features are 
selected on a quad-mesh by the user, modified subdivision 
rules may be used to subdivide the mesh in order to obtain 
sharp features in the limit surface [7]. This is particularly 
useful for multiresolution editing purposes where, in order 
to put a curved sharp edge on the limit surface, the user can 
simply draw a piecewise linear curve on the base domain. 
Then, this curve will be subdivided through the modified 
rules that guarantee its eventual sharpness. 

The Bender algorithm subdivides triangle meshes and is 
inspired by the approximant scheme developed in [23]. 
When the model to be improved does not contain noise, as 
in the case of most results of remeshing processes, an 
approximant scheme such as Hoppe's [23] would introduce 
an unnecessary error on vertices. Furthermore, such a 
scheme may require a considerable number of iterations to 
reach an acceptable fit to the data. In contrast, since our 
feature preserving subdivision scheme is interpolatory, 
we preserve the input data while bending the surface 
patches interpolating sample points. 

When the input triangle mesh interpolates noisy 
samples, subdivision may have no benefit. Instead, a 
smoothing process may be needed after the Edge-
Sharpening. Recent feature-preserving techniques for mesh 
smoothing [16][26] propose a penalty function that is based 
on the distance between a sample P and a tangent plane 
through sample Q to diminish the influence of P on Q when 
the two are separated by a sharp edge. 

3 THE EDGE-SHARPENER ALGORITHM 
The errors produced by feature-insensitive sampling 
approaches are concentrated in what we call chamfer 
triangles, which cut through the solid near sharp convex 
edges or through the solid’s complement near sharp 
concave edges. Our objective is to identify these triangles 
and to replace them with a finer triangle mesh portion that 
better approximates the sharp features of the solid.  

In order to preserve the integrity of the triangle mesh, 
we subdivide the chamfer triangles by inserting new 
vertices on edges between two chamfer triangles and also 
inside the corner triangles where several sharp features 
meet. Our approach, which does not split the edges that 
separate chamfer and non-chamfer triangles, involves three 
parts:  
• Identify the chamfer edges and corner triangles 
• Subdivide them by inserting new vertices,  
• For each newly inserted vertex, estimate the sharp edge or 

corner that we are trying to restore and snap the vertex onto 
that sharp edge or corner. 



 

3.1 Identification of the chamfer triangles 
Our approach identifies what we call chamfer edges, which 
are shown in blue in Fig. 2. It is based on the identification 
of smooth edges, which tessellate smooth portions of the 
original model and are identified using the following 
simple heuristic. 

In the remainder of the paper, an edge is said to be 
smooth if the angle between the normals to its two incident 
triangles is less than a given threshold, which we have 
chosen to be twice the average of such angles for the entire 
mesh. This choice of the threshold angle is motivated by the 
following consideration: when an original piecewise 
smooth model is sampled with a nearly infinite density, the 
dihedral angle at edges not belonging to chamfer triangles 
is nearly π. Furthermore, the number of non-smooth edges 
is negligible with respect to the total number of edges, thus 
the average dihedral angle remains close to π or, 
equivalently, the average angle, ε, between the normals of 
two adjacent triangles remains close to 0. The influence of 
non-smooth edges on ε is small but not null, thus the actual 
angle for smooth edges is slightly smaller than ε. In practice 
we do not have infinite samplings, so taking ε as threshold 
makes the algorithm too sensitive to small amounts of 
noise. We have experienced that doubling ε is a good 
compromise between theoretical correctness in the ideal 
case and robustness in all of the practical cases 
encountered. 

Initial Input Smooth Edges 

1 2 3 

4 5 6 

 
Fig. 2: An original model (top-left) was re-meshed through a feature 
insensitive algorithm (top-right). The smooth edges in the aliased input 
model were detected and the six filters (1-6) have selected the chamfer 
edges and the corner triangles to be subdivided. 

Our approach to identify chamfer triangles is based on 
the initial identification of the smooth edges and on a 
succession of six simple filters. Each filter colors the edges, 
vertices, or triangles, based on the colors of their adjacent or 
incident elements. (To simplify the presentation, we use 
colors instead of tags.) 

The first step is to paint brown all of the smooth edges 

(we assume that all vertices, edges, and triangles are 
initially gray), then we apply the following sequence of six 
filters: 
• Paint red each vertex whose incident edges are all brown. It is 

surrounded by a smooth portion of the surface.  
• Paint red each triangle that has at least one red vertex. They 

form the cores of a smooth regions. 
• Extend the cores by recursively painting red the triangles 

adjacent to a red triangle through a brown edge.  
• Paint red the edges and vertices of red triangles.  
• Paint blue each non-red edge joining two red vertices. These 

are the chamfer edges.  
• Paint green each triangle bounded by three blue edges. These 

are the corner triangles where chamfers meet. 

 
Fig. 3: Chamfers identified by Edge-Sharpener on a Marching-Cubes 
generated model (top row) and on the simplified version of a laser 
scanned model of Michelangelo’s David (bottom row, model courtesy 
of the Digital Michelangelo Project , Stanford University). Some edges 
are still gray or brown. 

The six steps are illustrated in Fig. 2. Filter 1 identifies 
the interior vertices of smooth regions. Filter 2 identifies 
the core triangles of smooth regions. These core triangles 
are incident upon at least one interior vertex. Filter 3 
extends the smooth regions to include all of the triangles 
that are adjacent to a core triangle by a smooth edge. Note 
that we do not need to distinguish between the different 
components of the smooth portion of the mesh. Filter 4 
marks the edges that bound the smooth regions to ensure 
that they are not mistaken for chamfer edges in step 5. Note 
that these edges are not smooth. Filter 4 also identifies the 
vertices that bound the smooth regions. Filter 5 identifies 
the chamfer edges as those that connect vertices on the 
boundary of smooth regions but do not bound a smooth 
region. Note that chamfer edges may, but need not, be 
smooth. Also note that some edges may still be gray and 
that some brown edges may neither be part of a smooth 
region nor be chamfer edges (Fig. 3). Finally, Filter 6 
identifies the corner triangles that are bounded by three 
chamfer edges and have all of their vertices on the 
boundary of smooth regions. Thus, they are at the junction 
of at least three portions of smooth regions. 
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3.2 Subdivision of the chamfer triangles 
To subdivide the chamfer triangles we insert a new vertex 
in the middle of each chamfer edge and in the middle of 
each corner triangle. Then, we re-triangulate the resulting 
polygons. We may have three cases (see Fig. 4): 
• A triangle with a single chamfer edge is split in two. 
• A triangle with two chamfer edges is split in three. 
• A corner triangle, which has three chamfer edges and an 

interior vertex is split into six triangles forming a fan around 
the interior vertex. 

a b c 

 
Fig. 4: Subdivision of a chamfer triangle with one (a) two (b) or three 
(c) chamfer edges. 

3.3 Snapping new vertices onto sharp features 
Finally, we must find the proper position for each new 
vertex introduced in the middle of a chamfer edge or of a 
corner triangle. We use an extrapolation of the smooth 
surfaces that are adjacent to these elements, as shown in 
Fig. 5 and Fig. 6 and explained below. 

 

B L 

A 

 
Fig. 5: Re-location of a new vertex splitting a chamfer edge. 

To find the position of a new vertex V inserted in a 
chamfer edge E, we consider the two original vertices, A 
and B, of E (see Fig. 5). We compute the weighted sum N of 
the normals to all of the red triangles incident upon A, 
normalize it, and define a plane P that is orthogonal to N 
and passes through A. As weights, we use the angle 
between the two edges of the incident triangle that meet at 
A [33]. Similarly, we compute the weighted sum M of the 
normals to the red triangles incident upon B, normalize it, 
and define a plane Q that is orthogonal to M and passes 
through B. Finally, we move V to the closest point on the 
line L of intersection between planes P and Q. Specifically:  

V = (A+B)/2+(h/k)H, 
where h=AB•N, k=2(M•N)(AB•N)–2(AB•M), 

and H=AB×(M×N)=(AB•N)M+(BA•M)N 
To find the position of a new corner vertex, W, inserted 

in a corner triangle with vertices A, B, and C, we proceed as 
follows. We first compute the weighted sum, N, of the 
normals to all of the red triangles incident upon A, 
normalize it, and define a plane P that is orthogonal to N 

and passes through A. Similarly, we define the plane Q 
through B with normal M and the plane R through C with 
normal S. Then, we move W to the intersection of planes P, 
Q, and R, which is the solution of the system of three linear 
equalities: W•N=A•N, W•M=B•M, W•S=C•S (see Fig. 6). 

 N

M S

 
Fig. 6: Re-location of a new vertex splitting a corner triangle. 

3.4 Dealing with degenerate situations 
For simplicity, we have omitted in the previous sections the 
discussion of degenerate cases. We identify them here and 
explain how they are handled.  

Nearly parallel planes: Such cases include situations 
where the pairs of planes are parallel or when the triplets of 
planes do not intersect at a single point, because their 
normals are coplanar. Moreover, since the algorithm is 
tailored for nearly uniform triangulations, we have chosen 
to avoid the creation of edges which are longer than the 
longest edge of the input mesh (see Fig. 7). Thus, if the 
extrapolated position would require the creation of such a 
long edge, or if the position itself is not defined because of a 
linear dependency between the planes, we simply leave the 
newly inserted vertex in the middle of the chamfer edge or 
of the corner triangle. 

a b c

d 

 
Fig. 7: In an input model (a) the chamfer edges joining nearly parallel 
surfaces (b) were subdivided without moving the new vertices (c). A 
wrong model (d) would be obtained without our edge-length check. 

Step features: In some cases, a portion of a triangle strip 
that forms a chamfer is bordered by a concave edge on one 
side and by a convex edge on the other. We detect these 
situations easily by analyzing the configuration of the 
triangles incident on the end-points of the chamfer edge or 
triangle. We treat these cases as the ones discussed above, 
and simply do not move the newly inserted vertices. 

Multi-corners: The original model may have more than 
three sharp edges meeting at a corner. In these cases, a 
corresponding re-sampled model has a strip of chamfer 
edges for each original sharp edge, and these strips meet at 
a region made of two or more corner triangles. The new 
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points that split these adjacent corners (and the chamfer 
edges in between) are moved to the same position, 
resulting in the creation of degenerate (zero-area) triangles. 
Therefore, when the sharpening is complete, it may be 
necessary to eliminate some degenerate faces [9]. We have 
tuned our implementation by considering as degenerate a 
triangle having at least one angle smaller than 1 degree; in 
this case we simply collapse the edge which is opposite to 
such an acute corner and update the connectivity graph 
consistently. 

4 BENDING 
The bending phase described in this section is particularly 
beneficial when restoring curved models from a 
triangulation generated by a feature insensitive sampling. 

The error between a curved smooth surface and its 
triangle mesh approximation can often be reduced through 
subdivision. Because standard subdivision approaches 
would round off the sharp features, we have developed a 
new subdivision scheme that preserves the sharpness of 
sharp edges, while bending their piecewise linear 
approximations into smooth curves.  

4.1 Tagging the sharp edges 
As suggested previously [23] [30], we could attempt to 
recover the sharp edges from the mesh produced with Edge 
Sharpener, using a crude threshold on the dihedral angle. 
Unfortunately, when the sampling is curvature-insensitive, 
such an approach could mistakenly tag, as sharp, some of 
the edges lying on smooth surfaces with high curvature.  
 

c d 

a b 

 
Fig. 8: An original surface with a sharp edge is approximated by the 
triangulation of a feature-insensitive sampling [a]. Filter 3bis has 
detected a non-brown edge having two incident red triangles and has 
tagged its vertices. Filter 3bis has also tagged a vertex having a non 
manifold red neighborhood (tagged vertices are shown in green in [b]). 
After the subdivision of the chamfer triangles, all of the newly inserted 
vertices have been tagged (yellow vertices in [c]). Finally, all of the 
edges joining two tagged vertices have been tagged as sharp (yellow 
edges in [d]). Note that the vertices of the tagged edges may have 
been tagged either in [b] or in [c]. 

To reduce the frequency of these false positives, we want 
to use the results of EdgeSharpener. However, the original 
version of EdgeSharpener only tags as sharp the new edges 
created by subdividing chamfer triangles. It does not 
explicitly tag as sharp the original edges where smooth 
patches meet. Hence, we have extended EdgeSharpener to 
also tag as sharp the non-smooth edges that bound two 
smooth faces. These pre-existing sharp edges are the non-

smooth edges that bound two red triangles. To identify 
them during EdgeSharpener, we perform the first three 
EdgeSharpener filters as explained in the initial version 
above. After Filter 3, we execute a new filter, say Filter 3bis, 
which finds the non-brown edges with two adjacent red 
triangles and tags their ending vertices. Filter 3bis also tags 
all of the vertices having a non-manifold red neighborhood. 
Then, we execute the remaining filters and, at the end, we 
tag all of the vertices inserted by EdgeSharpener to 
subdivide the chamfer triangles. Finally, we tag as sharp all 
of the edges which link two tagged vertices. This process is 
shown in Fig. 8. 

4.2 The Bender algorithm 
The Bender algorithm, introduced here, assumes that all of 
the sharp edges have been identified and tagged. Note that 
it also can be executed on tagged meshes that are not 
necessarily produced by EdgeSharpener. 

We wish to smooth the triangle mesh to bring it closer to 
the original curved surface. Because we assume that the 
samples (i.e vertices) lie on the original surface, we use an 
interpolatory subdivision scheme. We have selected to use 
a modification of the Butterfly subdivision [14], which splits 
each triangle into four by inserting a new vertex in the 
middle of each edge, as shown in Fig. 9. 

Each newly inserted vertex p is then moved to a position 
that is a linear combination of the edge’s end-points and six 
neighboring vertices. The configuration of the neighbors 
and their weights, which define the stencil of the 
subdivision rule, are reported in Fig. 10-R1, where the 
vertex p is marked by a black dot. 

 

 
Fig. 9: Butterfly subdivision: an example showing how an initial triangle 
mesh (on the left) is refined by a subdivision step (middle). On the 
right, the limit surface is shown. The red dots indicate the vertices of 
the initial triangle mesh, whose coordinates are not modified by the 
subdivision process. 

When repeated, the Butterfly subdivision converges to a 
smooth surface everywhere, except near extraordinary 
vertices, which do not have six incident triangles. The 
Butterfly scheme is not defined for border edges. Both 
problems have been addressed by Zorin et al. [44], who 
propose to adapt the weights of the linear combination to 
take into account the valence, k, of each vertex (i.e. the 
number of incident edges) and the fact that some of the 
neighboring edges and vertices may be on the border of the 
surface. They distinguish several cases, shown in Fig. 10-
(R1-R5 and E1-E2). For each case, the position of p is 
defined by a particular stencil [43]. The values of the 
weights have been incorrectly reported in [43]. We have 
corrected them according to [45]. The improved subdivision 
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guarantees that the limit surface is smooth everywhere, 
including near the extraordinary vertices. Furthermore, this 
scheme can handle manifold triangle meshes with 
boundary. In this case, each boundary edge is subdivided 
using the one-dimensional four point stencil introduced in 
[15] and depicted in Fig. 10-R2, which ignores the valence 
of the vertices and only makes use of the neighboring 
vertices on the boundary. However, the approach of [43] 
does not make provision for sharp edges, which we want to 
bend into smooth curves while preserving their sharpness. 
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Fig. 10: Stencils used by Bender. ‘p’ is the point being computed as a linear combination of the depicted neighboring vertices. All the other
possible neighbors are assumed to have zero coefficient. Sharp edges are shown in red. 

Our Bender algorithm is a modification of this scheme. It 
is able to smooth the mesh everywhere, while preserving 
the sharpness of the tagged edges. Our modification is 
limited to edges with one or both end-points bounding a 
sharp edge.  

4.2.1 Modified rules for sharp edges 
We say that a vertex with exactly two incident sharp edges 
is a manifold sharp vertex. If an edge, E, joining vertices V 
and W, is tagged as sharp, we may have three 
configurations: 

• If both V and W are manifold sharp vertices, then we 
subdivide E using the one-dimensional four-point scheme 
described in [14] and depicted in Fig. 10-R2, where the sharp 
edges are shown in red. 

• If both V and W are non-manifold, we leave the new point in 
the middle of E. 

• Now consider the case where only V is non-manifold. Let F 
be the sharp edge incident at W and different from E. We 
reflect F on the other side of E. To do so, we consider the 
plane P containing both E and F. On P, we compute the 
mirror F’ of F with respect to the bisector axis of E. Then we 
consider F’ as being the only other sharp edge incident at V 
and apply the four-point scheme (see Fig. 11-R6).  

4.2.2 Other modified subdivision rules 
When subdividing an edge with only one end-point, say V0, 
on a sharp edge, we perform a topological cut along all the 
sharp edges incident upon V0. Specifically, if V0 has n>1 
incident sharp edges, we create n–1 copies of V0, say 
V1…Vn, and duplicate all of the sharp edges meeting at V0.  
This process only involves topological operations and is  
illustrated in Fig. 11. 

When V0 is the dead-end of a chain of sharp edges (n=1), 
we do not duplicate any vertex or edge, and simply 
consider V0 as if it were not on a sharp edge. In all the other 
cases, after the cut, the vertex V0 becomes a boundary 
vertex. According to [43] and Fig. 10, we apply the suitable 
boundary rule and close the mesh back to its original 
configuration. 

Finally, if a non-sharp edge has both end points on a 



 

tagged edge, we perform the cut for both vertices, apply the 
proper boundary rule, and close the mesh back. 

V0 V0 V2 

V1 

 
Fig. 11: Example of topological cut along sharp edges (red on the left). 
In the image, V0, V1 and V2 have been displaced to show the 
topological hole. 

Note that if Bender is to be used more than once (as in 
the examples shown in Fig. 12), it is necessary to propagate 
the sharp-edge markings throughout the subdivision. Thus, 
when splitting a sharp edge, we tag as sharp the two new 
edges connecting the old end-points of the edge with the 
new vertex. Also, note that Bender can correctly handle 
manifold triangle meshes with both sharp edges and 
boundary, as shown in Fig. 12. 

 
 

Bender 

Bender 

 
Fig. 12: Top row: an example showing the behavior of Bender alone on 
a mesh with both boundary and sharp edges (shown in red on the 
leftmost model). Bottom row: another example showing the bending 
around the dead-end of a sharp edge. 

5 RESULTS AND DISCUSSION 
We have tested Sharpen&Bender extensively in conjunction 
with the SwingWrapper compression algorithm [5]. In 
order to reduce the number of bits to encode the vertex 
locations, SwingWrapper performs a remeshing of an 
original dense triangle mesh, constraining the position of 
each vertex to lie on a circle defined by two previously 
created neighboring vertices. Specifically, SwingWrapper 
grows the new mesh by attaching one new triangle at a 
time following an EdgeBreaker like traversal order [38][39]. 
When the new triangle has a new tip vertex, the location of 
this tip is computed as the intersection with the original 
surface of a circle orthogonal to the gate (edge where the 
new triangle is attached). Therefore, the two new edges 
have a prescribed length L. This scheme allows one to 
encode the location of the tip vertex using a few bits that 
quantize the dihedral angle at the gate. The sequence of 
quantized angles is further compressed using an arithmetic 

coder. The SwingWrapper compression is lossy, and most of 
the discrepancy between the original and the re-sampled 
models is concentrated near the sharp edges and corners, 
and near regions of high curvature. The connectivity of the 
meshes produced by SwingWrapper is encoded using 
modified versions of the EdgeBreaker compression scheme. 
In [5], we report very aggressive compression ratios and 
show that the error is concentrated around sharp features.  

We have also tested EdgeSharpener with and without 
Bender on a number of models generated through the 
Marching-Intersections algorithm [37], which performs a 
Marching-Cubes-like [32] re-tiling of an input mesh, and 
through surface reconstruction [3] applied on data which 
simulates the typical patterns used in laser sampling. 
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Fig. 13: Experimental results showing the reduction of the L∞ and L2 
distortions due to both EdgeSharpener and Bender. The number in the 
second column counts the faces of the remeshed models. All the errors 
are expressed as a percentage of the model's bounding box diagonal; 
errors are missing for the 'face' model because we did not have an 
original surface to compare with. In the last column the total running 
time is reported (in seconds). In all of the tests Bender was run once, 
except for the 'hand' for which two iterations were performed. 

We have found that in all the cases tested, when the 
original shape was sampled with a sufficiently high 
density, most of the sharp features can be completely 
recovered, while the parts of the mesh that correspond to 
regions of the original model without sharp features are not 
modified by Edge-Sharpener, and correctly smoothed by 
Bender (see Fig. 17). 

We have observed that Sharpen&Bend significantly 
reduces the error between the original shape and the 
remeshed one (Fig. 13). Consider two extreme cases: 1) 
when the original shape has no sharp edges EdgeSharpener 
has no benefit and 2) when all the faces of the original 
shape are flat, Bender has no benefit. Between these 
extreme cases, the error reduction varies depending on the 
shape and accounts to both EdgeSharpener and Bender. If 
the input model interpolates a dense enough sampling, 
EdgeSharpener is expected to have a strong impact on the 
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L∞ distortion, while Bender will mainly reduce the L2 error. 
EdgeSharpener, however, will also have an impact on the 
L2 distortion, whose reduction may become significant if 
the original shape has only flat faces separated by sharp 
edges. Furthermore, if the input model was obtained from 
too coarse a sampling, EdgeSharpener may miss some 
sharp edges. In such a case, Bender will round these edges 
and may introduce a slight increase in the L∞ distortion. 
Fig. 13 shows the results of our experiments which clearly 
agree with the above considerations. Errors have been 
computed through the publicly available Metro tool [11], 
except for the model of the face for which we did not have 
an original surface to compare with. The remeshed versions 
of the test models, along with their Sharpen&Bend 
improved versions, are shown in Fig. 17 and Fig. 18. 

To analyze how sampling density affects their benefits, 
we have applied Edge-Sharpener and Bender to models of 
increasing resolution produced by SwingWrapper. As 
indicated in Fig. 14, the relative L2 error reduction remains 
considerable at all scales. The top-left part of the figure 
includes an additional curve relative to the PGC coder [28]. 
Note that PGC uses a feature-sensitive remeshing engine 
[30], and thus outperforms SwingWrapper on models with 
sharp features. The error reduction due to Sharpen&Bend, 
however, widely compensate for this advantage. 
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Fig. 14: Impact of EdgeSharpener and Bender on the rate-distortion 
curves of the SwingWrapper compressor. Bit-per-vertex rates are 
relative to the # of vertices of the original model. Errors are expressed 
in units of 10-4 of the bounding-box diagonal. 

We conclude that the effectiveness of the proposed 
method is not restricted to sharply uniform meshes. For 
example, EdgeSharpener correctly restores the sharp 
features of typical meshes generated through interpolation 
of laser-captured point sets, or through iso-surface 
polygonization procedures which exhibit a fair amount of 
variation in edge-length. Though they are not uniform, in 
fact, it is important to note that in these meshes the edge 
length is typically bounded (i.e. cell’s diagonal in the 
Marching Cubes approach), therefore our detection of 
degenerate cases still offers good results. 

Finally, we have found that small quantities of noise do 
not prevent EdgeSharpener to correctly restore sharp edges. 

Modern, well-calibrated laser scanners produce absolutely 
acceptable data. Clearly, if the amount of noise becomes 
comparable with the inter-sampling spacing, its influence 
on the dihedral angles prevents the algorithm to identify 
some chamfer elements, and some sharp edges may be 
missed. In [4] an example is depicted showing how the 
sharpening quality degrades as the noise increases. 
Furthermore, for such heavily perturbed data an 
interpolating subdivision is not appropriate, and it is 
preferable to follow the EdgeSharpening by a feature-
preserving smoothing [16][26] or by an approximant 
subdivision of the tagged mesh [23]. 

5.1 Limitations 
Edge-Sharpener can miss sharp features that are smaller 
than the inter-sample spacing and may produce sharp 
edges where the original model has a feature that has been 
smoothed with a small-radius blend (Fig. 16). There is 
simply not enough information in the sampling to recover 
such small features or blends. 

 
 

 

Original 

 
Fig. 15: Reconstruction of a sharp feature which blends smoothly onto 
a flat surface. The “ripple” of the strip of chamfer triangles prevented 
the red region to expand on the chamfer. 

Also, in extremely rare cases, the alias corresponding to 
a feature that blends smoothly into a flat area may be 
painted red, preventing the detection of some “desired” 
chamfer triangles. This situation, however, may happen 
only if the strip of such triangles is not aliased, which is 
very improbable in practical cases. Fig. 15, for example, 
shows the correct reconstruction of such a blended feature 
from a retiled model having the typically “rippled” strips of 
chamfer triangles. On the other hand, if the same model 
was sampled through a grid exactly aligned with its sharp 
edges, the blended feature would not have been recovered 
because its corresponding strip of chamfer triangles would 
have been smoothly blended onto the flat face, and the red 
region would have expanded along the strip through 
brown edges. 

Finally, if an original model has a smooth face that is 
thinner than 3 times the inter-sample spacing, Edge-
Sharpener may not be able to identify a sufficient number 
of smooth vertices for it and hence may not be able to 
recover the sharp features which bound that face. As for the 
unwanted sharpening of small radius blends, this problem 
is a consequence of an insufficient sampling density, and 
may be solved by using a denser sampling. 

Unfortunately, we cannot provide measures of sampling 
density that guarantee that EdgeSharpener does not miss 
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any feature. Sufficient sampling conditions for non-smooth 
geometry are hard to define [13] and, to the best of our 
knowledge, their formalization is still an open problem. 

 

Fine 
Mesh 

Chamfer Detection Chamfer Split 

Original Model 

Coarse 
Mesh 

Bending 

Fig. 16: Unwanted creases may be produced if an original surface has blends whose radius is smaller than the inter-sample spacing (top row).
If the sampling step is small compared to the blend radius, the blends are not modified by Edge-Sharpener (bottom row), while they are
smoothed as expected by Bender. 

5.2 Performance 
Our experiments on a variety of meshes indicate that Edge-
Sharpener is extremely fast and robust. For example, the 
sharpening of the models presented in this paper took less 
than 0.4 seconds each on a standard PC equipped with a 
1.7Ghz CPU. The performance of Bender is comparable 
with the one of a typical subdivision scheme. Our 
implementation, which is not particularly optimized, 
subdivides an average of about 22000 triangles per second. 
Precise timings for the combined Sharpen&Bend algorithm 
are shown in Fig. 13, where each model was subdivided 
once, except for the hand which was subdivided twice. 

6 CONCLUSIONS 
We have presented a simple, automatic, and efficient edge-
sharpening procedure designed to recover the sharp 
features that are lost by reverse engineering or by 
remeshing processes that use a non-adaptive sampling of 
the original surface. Also, we have introduced (1) a new 
automatic tagging approach which marks the sharp edges 
and (2) a Bender modified subdivision scheme that smooths 
the surface and preserves the sharpness of tagged edges 
while bending chains of them into smooth curves. We have 
run numerous tests on models coming from uniform 
remeshing, marching-cubes iso-surface generation, and 
surface reconstruction from nearly uniform clouds of 
points. In all of the cases, in addition to the correct 
reconstruction of sharp features, we have observed that the 
distortion between the mesh and the original model was 
significantly reduced by our sharpening process, while the 
parts of the mesh not corresponding to sharp features in the 
original model were not modified. Moreover, when the 
original model has curved areas, the application of Bender 
further decreases the distortion. 
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Fig. 17: Some examples of models improved through Sharpen&Bend. Corresponding numerical results are reported in Fig. 13. Original models 
courtesy of INPG (casting), Cyberware (ball_joint), H. Hoppe (fandisk), Y. Ohtake (octa_flower), Minolta (face) and Far Field Technology (hand). 
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Fig. 18: The fandisk model was slightly tilted (30 degrees around the x-axis) before being re-sampled through a regular grid aligned with the 
coordinate frame (a). Although the sharp edges are not aligned with the sampling pattern, EdgeSharpener correctly reconstructed them. The final 
model improved by Sharpen&Bend is shown in (b). 

 
 

 


