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Abstract When designing novel algorithms for ge-
ometric processing and analysis, researchers often as-
sume that the input conforms to several requirements.
On the other hand, polygon meshes obtained from
acquisition of real-world objects typically exhibit sev-
eral defects, and thus are not appropriate for a wide-
spread exploitation.

In this paper, an algorithm is presented that strives
to convert a low-quality digitized polygon mesh to a
single manifold and watertight triangle mesh without
degenerate or intersecting elements. Differently from
most existing approaches that globally re-sample the
model to produce a fixed version, the algorithm pre-
sented here attempts to modify the input mesh only
locally within the neighborhood of undesired config-
urations.

After having converted the input to a single combina-
torial manifold, the algorithm proceeds iteratively by
removing growing neighborhoods of undesired ele-
ments and by patching the resulting surface gaps un-
til all the “defects” are removed. Though this heuris-
tic approach is not guaranteed to converge, it was
tested on more than 400 low-quality models and al-
ways succeeded. Furthermore, with respect to similar
existing algorithms, it proved to be computationally
efficient and to produce more accurate results while
using fewer triangles.

1 Introduction

Significant advances in 3D acquisition technologies
have brought a gradual change in the way 3D mod-
els are produced and handled, and currently digitized
models are becoming more and more widespread. In
particular, polygon meshes are becoming a de-facto

standard in several application contexts, and popular
3D shape repositories [23] are currently dominated
by this kind of models. Furthermore, polygon meshes
are widely used as native representation to encode
the surfaces produced by most acquisition technolo-
gies such as laser-triangulation 3D scanners.

Although producers of 3D digitizers try to make their
tools as flexible as possible, each specific application
context has its own requirements that define the class
of supported 3D models. In industrial design, for ex-
ample, several downstream applications assume that
the mesh does not contain degenerate, or nearly de-
generate elements. In computer graphics, numerous
shape analysis tools expect the input mesh to enclose
a solid; such tools typically fail if the mesh has holes,
or provide unpredictable results if the input has self-
intersections.

Often, a 3D scanning session is considered to be com-
plete when all the views (i.e. the range images) are
aligned and merged within a single model [1]. While
this is sufficient for mere visualization purposes, at
this stage polygon meshes may contain degenerate
elements, self-intersecting or overlapping parts, sur-
faces holes, and a number of other “flaws” that make
them not appropriate for a widespread exploitation
(see Figure 1).

In this article, an automatic procedure is presented to
remove all the aforementioned flaws and transform
a raw digitized mesh into a single manifold and wa-
tertight triangle mesh. Two main innovations charac-
terize the proposed approach with respect to existing
methodologies. First, it strives to modify the mesh as
little as possible, which makes the algorithm less ag-
gressive than typical volume-based approaches. Sec-
ond, it is tailored to treat a specific class of meshes:
for these meshes the algorithm leads to better results
with respect to those produced by existing CAD-oriented
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Fig. 1: The raw model of a chair was produced by merg-
ing a set of views acquired through laser scanning (left).
The same model was processed through the algorithm de-
scribed in this article to become the watertight surface of
a polyhedron (right). Raw model courtesy of Aim@Shape.

methods, in terms of both visual quality and numeri-
cal accuracy.

The main application domain of the repairing approach
presented here is constituted of raw digitized solid
objects. This choice makes it possible to assume that
(1) the resulting mesh should be a single connected
manifold bounding a polyhedron, and (2) the sam-
pling density should not vary significantly from one
part of the mesh to another.

2 Terminology

Undesirable characteristics of a triangle mesh can be
roughly classified as topological or geometrical de-
fects. For this reason, during the development of the
algorithm described here, particular care was taken to
maintain a neat separation between connectivity and
geometry. In the remainder, some notation adapted
from [2] is used, and we denote a triangle mesh as
a pair (P,Σ), where P is a set of N point positions
pi = (xi, yi, zi) ∈ R3 with 1 ≤ i ≤ N , and Σ is
an abstract simplicial complex which contains all the
topological information. The complex Σ is a set of
subsets of {1, ..., N}. These subsets are called sim-
plices and come in three types: vertices v = {i},
edges e = {i, j}, and triangles t = {i, j, k}, so that
any non-empty subset of a simplex of Σ is again a
simplex of Σ, e.g., if a triangle is present so are its
edges and vertices.

The abstract simplicial complex Σ describes a topol-
ogy, or connectivity, on P . We refer to P as the ge-
ometry of the triangle mesh M = (P,Σ), while we
call connectivity, or topology, of M the connectivity
defined on P through Σ. We say that M is combi-
natorially manifold iff Σ is a combinatorial mani-
fold [14]. In its turn, Σ is a combinatorial manifold
iff all its vertices are manifold, and a vertex of Σ is

manifold if its neighborhood is homeomorphic to a
disk in the topology of Σ.

In a triangle mesh M = (P,Σ), for each simplex
σ = {i1, . . . , in}, the set |σ| ⊂ R3 whose points
can be defined as linear convex combinations of the
points pi1 , . . . ,pin is called the geometric realiza-
tion of σ, and |M | =

⋃
σi∈Σ |σi| is the geometric

realization of M [2]. Thus, the geometric realization
is a set of points of R3 for which an Euclidean topol-
ogy exists, and we say that |M | is manifold iff the
neighborhood of each point in |M | is homeomorphic
to a disk. Throughout the remainder of this paper we
say that M is geometrically manifold, or manifold
in the Euclidean sense, if |M | is manifold with re-
spect to the Euclidean topology. Note that a trian-
gle mesh may be manifold in the combinatorial sense
and not in the Euclidean one, for example when the
mesh self-intersects. Also, a geometrically manifold
mesh may not be combinatorially manifold. To ob-
tain such a model, for example, start from a trian-
gle mesh which is both combinatorially and geomet-
rically manifold (eg. a triangulated sphere), pick an
edge e = {i, j}, add a new triangle t = {i, j, k} and
set pk := pj . If we relax the requirement of home-
omorphism with a disk to the weaker condition of
homeomorphism with a disk or with a half-disk, we
say that M is manifold with boundary, which holds
both in the Euclidean and in the combinatorial sense.
We define an orientation of an edge as an ordering of
its two vertices. Furthermore, we call an orientation
of a triangle an equivalence class of ordering of its
vertices where (v1, v2, v3) v (vτ(1), vτ(2), vτ(3)) are
equivalent orderings if the parity of the permutation
τ is even. Two triangles sharing an edge e are consis-
tently oriented if they induce different orientations
on e. A triangle mesh is orientable iff all its triangles
can be oriented consistently.

3 Related Work

Algorithms to adapt polygonal meshes to particular
application contexts are comprehensively described
in the literature [10], and specific approaches to re-
move topological and geometrical defects have been
proposed. Algorithms for mesh repairing can be clas-
sified into two main categories: surface-based and
volume-based methods. Surface-based algorithms try
to remove the defects by modifying the input only
locally; these methods are not invasive, as they act
only where necessary, but unfortunately they typi-
cally fail on complex configurations or require the
user to interact to resolve ambiguities. Volume-based
algorithms use the input to define a new (implicit)
surface which is eventually tessellated to produce the
output mesh; these methods are typically much more
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robust and can treat a wide range of configurations,
but unfortunately they introduce modifications in all
the parts of the surface, regardless of the presence or
absence of defects.

3.1 Surface-based methods

Among surface-based methods, some approaches are
designed to fix topological flaws, while some others
are more general and attempt to fix the geometry as
well. The first subclass of topological methods is mo-
tivated by the fact that for several applications it is
sufficient that the mesh can be encoded through data
structures optimized for manifold meshes. Moreover,
in several scenarios the acquisition process produces
meshes which are mostly combinatorial manifolds, in
the sense that only a small percentage of vertices are
singular. This fact prompted the development of sev-
eral algorithms that slightly modify the connectivity
to edit the singularities without changing anything far
from them. To achieve this goal, a widely used ap-
proach consists of decomposing non-manifold meshes
into simpler parts, splitting at those elements (ver-
tices, edges, facets, etc.) where singularities occur
[16, 26]. The result of such a decomposition is a col-
lection of singularity-free components.

In [26] a method is proposed to convert a non-manifold
set of triangles to a set of manifold surface meshes.
First, non-manifold edges (i.e. edges having more than
two incident faces) are identified, and each edge hav-
ing 2k incident faces is split into k manifold edges,
so that if these edges are bent by a small amount in
the appropriate direction, the resulting shape will not
have self-intersections. This representation is called
an edge-manifold representation, and may still con-
tain isolated non manifold vertices. Then, to guaran-
tee a manifold topology, one has to identify and du-
plicate properly the non manifold vertices. A strategy
is suggested to produce a minimum number of vertex
duplications [26].

In a similar setting, [16] introduces a strategy based
on two high level operations: cutting and stitching.
The cutting operation involves identifying non-manifold
edges and cutting the surface along such edges. Two
strategies are available for cutting: a global method,
operating on all the surface elements, which is ap-
propriate for cuts covering a large portion of the sur-
face, and a local strategy, operating only on a set of
marked vertices and edges, which is more efficient
in case of a small number of marked elements. The
result of the cutting operation is a manifold surface
that may contain boundary edges. Hence, a stitching
operation is performed, which involves joining two
boundary edges while guaranteeing that the surface

has a manifold topology. There are two greedy strate-
gies for stitching: pinching attempts to simply zip
boundary edges created during the cutting operation,
while snapping attempts to stitch along boundaries
other than those, and reduces the number of con-
nected components of the surface. Differently from
[26], the method in [16] does not address geometric
issues such as self-intersecting surfaces.

In order to fix geometric flaws, Borodin and colleagues
[8] remove artefacts such as surface gaps and cracks
using a vertex-edge contraction operator and a pro-
gressive boundary decimation algorithm. Unfortunately,
this method is tailored to fix tessellated CAD mod-
els, and typically fails when trying to fix meshes pro-
duced by modern acquisition hardware that often con-
tain complex holes bounded by several curves.

Filling complex holes in meshes is a long-standing
problem, and several solutions have been proposed,
starting from plain triangulation algorithms [4], up to
more elaborated approaches that guarantee a certain
continuity of the normal field [20], even by using ra-
dial basis function interpolators [31].

Based on the observation that tiny handles and tun-
nels are often generated during the reconstruction of
a mesh from raw data, in [18] an algorithm is pro-
posed to locate such topological noise and locally re-
triangulate the mesh in order to reduce its genus.

Aside from the scientific literature, most commer-
cial systems already provide algorithms to fix spe-
cific mesh problems. Among its repairing features,
Geomagic [33] provides several hole-filling algorithms
that can also be launched automatically depending
on specific parameters of the holes. Besides auto-
matic hole-filling, Polyworks [34] also provides man-
ual tools to deal with really tricky problems. One
of the most comprehensive tools for mesh repairing
is Rapidform [32], which can automatically remove
crossing, non-manifold and other degenerate poly-
gons, and fill holes intelligently based on surround-
ing curvature. The common missing feature, how-
ever, is an integrated approach that combines all the
algorithms to produce a clean polyhedron out of a
raw merge of range images, possibly without requir-
ing user interaction. Though several algorithms are
provided by commercial systems, they are tailored
for specific flaws, and usually a sequential run of
these algorithms is not sufficient (see Section 4.2.4).

3.2 Volume-based methods

In some cases the input mesh exhibits a significant
amount of flaws, and surface-based approaches be-
come inefficient and do not always succeed. Such
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polygon soups can be more effectively fixed through
volume-based methods which, after having converted
the mesh to a volumetric representation, produce a
completely new mesh approximating the input.

Earlier approaches use a BSP tree to represent the
original surface mesh [21]. The requirement of sig-
nificant computational resources for this approach,
however, prompted the design of a more efficient al-
gorithm in which the input polygon soup is coded
through an octree to produce the output closed mani-
fold [19]. Besides its efficiency in terms of speed and
memory consuption, this method also preserves geo-
metric details and sharp features of the original mesh.
A major drawback is given by the fact that the out-
put may still contain topological singularities and, as
most volume-based approaches, both [21] and [19]
are likely to completely remove thin structures.

In [22] an algorithm is proposed to convert the in-
put to a uniformly sampled distance field which is
processed and eventually polygonized to produce a
simplified version of the input. If the main goal is to
repair the input, it must be considered that a global
resampling is employed, and thus important features
such as sharp creases may be spoiled by the process-
ing.

The volume-based paradigm is also used for a spe-
cific kind of mesh repair called mesh completion [24].
In these approaches the volume is represented by a
pair of graphs representing the interior and the ex-
terior of the model. Depending on the desired topol-
ogy of the repaired model, these approaches fill mesh
gaps rather efficiently and effectively. Similarly, vol-
umetric diffusion has also been used in [12] to fill
complex holes.

An octree representation is also used by Bischoff and
Kobbelt [6] to remove combinatorial and geometrical
singularities from tessellated CAD models. This ap-
proach is specifically designed for CAD models, and
expects the input to be a set of tessellated patches,
each without self-intersections. Moreover, possible
mesh gaps are filled only if they are greater than a
user-defined threshold; in order to avoid introduc-
ing unnecessary distortion while closing all the gaps,
such a threshold may need to differ from one part of
the model to another, and this makes it difficult to
automatize the process in order to build a watertight
manifold mesh.

The method presented in [7] uses an octree to com-
pletely resample an arbitrary polygon mesh, so that
the result is guaranteed to be the boundary of a solid
object which stays within a user-prescribed distance
from the original mesh. Though providing strong guar-
antees, this method suffers of the typical drawback
of volume-based approaches, that is, it inserts a dis-

tortion even in those parts of the surface that do not
contain any flaw.

4 Repairing process

The automatic repairing procedure described here is
performed in two successive phases: topology recon-
struction and geometry correction. Both the stages
have been designed with the objective of modifying
the mesh as little as possible.

4.1 Topology reconstruction

This stage of the algorithm aims to convert the set of
input polygons into a single combinatorially mani-
fold and oriented triangle mesh. Note that in this sec-
tion only the connectivity of the input is taken into
account, and the goal of the algorithm described here
is to construct a single combinatorial manifold with-
out boundary.

Most graphic formats widely used to share 3D mod-
els (OFF, VRML, PLY, ...) encode surface meshes
through indexed face sets; specifically, these file for-
mats contain a first block specifying the position of
the vertices, and a second block in which each poly-
gon is represented through a sequence of indices of
vertices in the first block. Clearly, files of this type
are not guaranteed to represent a well-defined poly-
hedron, while they may easily encode non-manifold
and/or non-orientable sets of polygons.

For the sake of simplicity, our algorithm first con-
verts each polygon to a set of triangles through tri-
angulation. Then, the first step in the topology re-
construction amounts to building an explicit connec-
tivity between adjacent triangles. After having trian-
gulated the input polygons, triangle connectivity can
be reconstructed as follows: first, an empty list L of
edges is created, then for each triangle {i, j, k} its
three edges {i, j}, {j, k} and {k, i} are inserted into
L and, finally, L is sorted according to a suitable or-
der relation; specifically, for a generic pair of edges
e1 = {i, j} and e2 = {k, n} in L, without loss of
generality we assume that i ≥ j and k ≥ n, and
define a lexycographical order relation as follows:

e1 ≤ e2 iff i < k OR (i = k AND j ≤ n)
(1)

Two triangles are adjacent iff they induce consecu-
tive edges in the sorted list L. Thus, by keeping a
link between each edge ei in L and the triangle that
originated ei, it is possible to retrieve all the triangles



A lightweight approach to repairing digitized polygon meshes 5

adjacent to a given one in optimal time. Specifically,
let t be a triangle bounded by the edges e1, e2 and e3.
The triangles adjacet to t can be obtained by access-
ing ei in L and by looking at its successive and previ-
ous edges in the list; if such previous (or successive)
edge has the same vertices as ei, then the triangle that
originated it is adjacent to t. By explicitly encoding
the edges in the data structure, this approach to com-
pute triangle adjacencies requires a number of oper-
ations which is linearly proportional to the number
of adjacent triangles, thus it is optimal. Therefore,
this makes it possible to actually walk across adja-
cent triangles in optimal time, which is necessary to
implement region-growing algorithms to, for exam-
ple, calculate a consistent orientation of the triangles
in a mesh.

At this point, a fundamental step of the algorithm
aims to remove topological singularities. To achieve
this objective, we chose to rely on the approach de-
scribed in [16] because both the cutting strategy and
the pinching phase are relatively cheap in terms of
computational resources, which is important when
dealing with big meshes. If the resulting manifold
mesh is made of more than one connected compo-
nent, only the biggest component is kept, that is, the
component made of the largest number of triangles.
In this phase, isolated vertices are considered as con-
nected components in their own, and hence are re-
moved.

Next, the algorithm assigns an orientation to one seed
triangle, and propagates the orientation to neighbor-
ing triangles; specifically, let t be an already pro-
cessed triangle and let s be a triangle adjacent to t
and not already processed. If s and t are not consis-
tently oriented, then s is inverted, that is, two of its
three vertices are swapped in the ordered set. Once
all the triangles have been visited and possibly in-
verted, the mesh is traversed and possibly cut along
edges having non-consistently oriented incident tri-
angles. Clearly, if such a cut takes place, the com-
binatorial manifold provided by the algorithm does
not completely conform to our requisites as it has
a boundary; in other words, in this case the algo-
rithm fails to produce a single combinatorial mani-
fold without boundary.

If no cuts were necessary, the mesh may still have
holes that were already present in the original input.
For each hole, a patching procedure such as the one
described in [20] in launched. This procedure first
triangulates the hole as described in [4], and then in-
serts new vertices in the patching triangulation so as
to resemble the sampling density of the surround-
ing region: these new vertices are moved to posi-
tions that minimize the normal-field variation. Note
that though the hole-filling procedure is guaranteed

to converge, the resulting patches are not guaranteed
to be intersection-free.

To summarize, the topology reconstruction phase pro-
ceeds as described in Algorithm 1.

Algorithm 1 Main steps of the topology reconstruc-
tion phase.

Require: An indexed face set F .
Ensure: A single combinatorial manifoldM.

1: Triangulate all the faces in F
2: InitializeM with the resulting triangles
3: Compute the triangle-triangle adjacency relations
4: Remove singularities as described in [16]
5: Remove all the connected components but the largest

one
6: Orient the mesh
7: if cuts were necessary then
8: warn the user and terminate
9: else

10: patch mesh holes with new triangles [20]
11: end if

4.2 Geometry correction

Once the connectivity of the mesh is “fixed” as de-
scribed in Section 4.1, the geometric aspects are dealt
with as follows. Typical geometric flaws in a triangle
mesh include degenerate elements (i.e. triangles with
null area) and self-intersections.

4.2.1 Higher-order simplicial neighborhoods In or-
der to repair geometric flaws, the algorithm presented
here makes use of the notion of simplicial neighbour-
hood. Let L be a submesh of a combinatorial mani-
foldM , possibly with boundary, and letN(L,M) be
the submesh defined by set of triangles that share at
least a vertex with L. N(L,M) is said to be the sim-
plicial neighborhood of L [27]. In the particular case
in which L is made of a single triangle t, we define
the notion of higher-order simplicial neighborhood.
Specifically, we call kth − order simplicial neigh-
borhood of a triangle t in M the submesh of M de-
fined as N(N(...(N(t,M)...),M),M), with k − 1 nested
levels. Thus, the first-order simplicial neighborhood
corresponds to the simplicial neighborhood, the sec-
ond order is the simplicial neighborhood of the sim-
plicial neighborhood, and so on. In the remainder a
compact notation is used, and the kth − order sim-
plicial neighborhood of a triangle t in M is denoted
as Nk(t,M). Finally, by convention, we say that the
zero-order simplicial neghborhood of a triangle is the
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triangle itself, that is, N0(t,M) = t. Examples of
higher-order simplicial neighborhoods are shown in
Figure 2.

Fig. 2: The zero-order simplicial neighborhood N0(t,M)
of a triangle t (left), its first order neighborhoodN1(t,M)
(middle), and its second order neighborhood N2(t,M)
(right).

4.2.2 Degeneracy removal While the removal of ex-
actly degenerate elements can be easily performed
using [9], removing nearly degenerate triangles ap-
pears to be much harder. Unfortunately, however, skinny
triangles may be the source of several problems even
if they are not exactly degenerate. The attempt to
measure the level of degeneracy of a triangle has led
to several definitions, in particular in the study of Fi-
nite Element methods [29] where well-shaped sim-
plices are fundamental for a robust computation. In
order to assess the degeneracy of triangles, we chose
to implement a strategy based on the Epsilon Geom-
etry introduced in [17]. In our framework, the value
of ε is an angle. If a triangle has an angle smaller than
ε or bigger than π − ε such a triangle is declared to
be degenerate. In this case, the algorithm strives to
resolve the degeneracy through swapping and con-
traction of edges, inspired from ideas of [9]. Specif-
ically, triangles having a nearly flat angle are treated
by swapping the edge opposite to such angle, while
triangles having a nearly null angle are removed by
collapsing the edge opposite to such angle to its mid-
point (checks are performed in this order). The value
of εmay be tuned by the user. To run the experiments
shown in this paper, a default value of arcsin(10−5)
was used; in [2], this particular value was proven to
be a good compromise between precision and robust-
ness in most practical cases. Schematic examples are
shown in Figure 3.

Note that due to topological constraints (i.e. the mesh
must remain a combinatorial manifold), not all the
edge swaps and the edge collapse operations can be
performed [13]. Therefore, it may happen that a de-
generacy would need to be treated but actually cannot
be due to such constraints. In this case, we remove
all the triangles belonging to the simplicial neighbor-
hoodN(ti,M) of the degeneracy ti and patch the re-
sulting gap using [4]. Then, we run the swap/collapse
routine within the patch and, if once again it does

Fig. 3: Nearly degenerate triangles are removed through
edge swap (top) or edge collapse (bottom) as described in
Section 4.2.2. In this image the value of ε is exaggerated
on purpose to better convey the concept.

not succeed, for each remaining degeneracy tjk we
compute the second order simplicial neighborhood
N2(tjk ,M), remove it from the mesh and triangu-
late the gap again, and so on. In other words, at each
iteration we enlarge the size of the neighborhood of
the degeneracies that could not be solved through the
swap/collapse routine. The process stops with failure
after a prescribed number of attempts. In our proto-
type implementation the number of such iterations is
limited to 3; this value provides an extremely high
percent of success (all the degeneracies in our 400
test models could be resolved) while keeping the mod-
ification enclosed within a tight neighborhood (i.e.
a third order simplicial neighborhood) of the orig-
inal flaw. After the removal of the patch, but before
the gap re-triangulation, the algorithm needs to check
and possibly remove small disconnected components
that detached from the main object. When k is suf-
ficiently large, in fact, the kth − order simplicial
neighborhood of a triangle may be non-simply con-
nected, and in this case its removal would leave little
disconnected pieces that need to be removed. Also,
in the hole left by the removal of a simplicial neigh-
borhood, some of the bounding vertices may be non
manifold: in this case, each such singularity is au-
tomatically duplicated [16] and, by construction, the
patching triangulation exhibits (exactly) degenerate
triangles that can be easily removed through a single
edge-collapse.

Algorithm 2 provides a sketch of the proposed itera-
tive approach.

4.2.3 Removal of self-intersections In several ap-
plication contexts the input mesh is assumed to en-
close a polyhedron, and thus it is required not to have
self-intersections. While it is relatively easy to check
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Algorithm 2 Algorithm for degeneracy removal.

Require: A combinatorial manifold M and an integer
threshold max iterations

Ensure: A combinatorial manifoldM′ and a status notice
(success/failure)

1: M′ :=M
2: Let S be the set of all the triangles ofM′
3: for k = 1 to max iterations do
4: Run the swap/collapse algorithm within S
5: Let T be the set of degeneracies in S untreatable

due to topological constraints
6: if T = ∅ then
7: terminate with success /*M′ is degener-

acy free */
8: end if
9: Let R be the union of the kth− order simplicial

neighborhoods of the tis ∈ T
10: Remove R fromM′
11: Remove possible disconnected components from

M′
12: Patch the remaining gaps with a new set P of

triangles
13: S := P
14: end for
15: if S contains degenerate triangles then
16: terminate with failure /* M′ has degenerate

triangles */
17: else
18: terminate with success /* M′ is degeneracy

free */
19: end if

a mesh for self-intersections, it is not that trivial to
remove them while modifying the mesh only locally.
Similarly to the treatment of degenerate triangles, the
algorithm proposed here is based on an iterative re-
moval / gap-filling approach.

Clearly, the detection of intersecting triangles can-
not be performed by simply checking each pair of
triangles, as this would lead to a quadratic complex-
ity which is not affordable for even relatively small
meshes. Hence, the automatic detection must rely on
some kind of optimization, which is often based on
spatial subdivision. Typical approaches are based on
kd-trees, octrees [28] or on hierarchies of object-oriented
bounding boxes [15]. In our context, however, we
mostly target the processing of digitized models, which
have the characteristic that triangles do not have much
variation in size. For this reason, we rely on a uni-
form space subdivision that can be efficiently com-
puted as described in [25]. Besides being efficient
from the point of view of the computation time, us-
ing this solution is also cheap in terms of memory
consuption, as only the voxels that actually contain
portions of triangles are encoded. Within each voxel,
a brute-force algorithm is run which checks all the

possible pairs of triangles for intersection. During ex-
perimentation, a fixed grid size made of 1003 vox-
els proved to behave satisfactorily for scanned mod-
els ranging from few thousand to nearly 4 million
faces. Probably a more elaborate study of the grid
size, which might adapt to the mesh at hand, would
lead to slightly better performances; however this is
not the main focus of this article, and the fixed cubic
grid used was good enough for all our test cases.

After having identified all the pairs of intersecting
triangles, the algorithm just removes them (both the
intersecting and the intersected triangles are deleted
for each pair). Possible disconnected components re-
sulting after the removal are deleted too, and the re-
maining gaps are filled using [4]. At this point, the
voxel grid is updated with the new triangles that have
been created to fill the gaps, and the self-intersection
check is run again within the updated voxels. For
each triangle that still intersects other parts of the
mesh, its first order simplicial neighborhood is re-
moved, the gaps filled and the voxels updated. If there
are still intersetcing triangles, their second order neigh-
borhood is removed, and so on. The process stops
with failure when the simplicial neighborhood reaches
a prescribed maximum order. As in the degeneracy
removal step, in our prototype implementation the
number of such iterations is limited to 3. In Figure 4
an example is shown in which all the self-intersections
could be removed in two iterations.

Algorithm 3 provides a sketch of the proposed ap-
proach.

4.2.4 Integrated Flaw Removal Since the objective
of the repairing algorithm is to remove both degen-
eracies and self-intersections, the above-described it-
erations must be integrated into a single loop. Notice
that the two routines cannot be simply launched in se-
quence, because there are no guarantees that the de-
generacy removal does not introduce self-intersections
and vice-versa. Indeed, after having deleted all the
faulty triangles and the resulting disconnected com-
ponents, the remaining holes are patched as described
in [4]: this hole-filling algorithm simply triangulates
the boundary polygon without adding any new ver-
tex. In [4], the authors prove that there exist some
3D polygons for which all the possible triangulations
self-intersect, and verifying that a given polygon can
be triangulated without self-intersections is an NP-
complete problem. Therefore, some heuristics have
been introduced to compute the triangulation, and
though the algorithm is guaranteed to converge to a
solution, there are no guarantees that such a solution
is a geometrically manifold mesh without degenera-
cies.
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Fig. 4: After having converted the model to a combinatorial manifold without degeneracies, self-intersecting triangles
(depicted in blue) are located and their higher-order simplicial neighborhoods are re-triangulated as described in section
4.2.3. After two iterations the mesh no longer contains any self-intersection. Note that vertices which are entirely in the
blue regions are simply eliminated from the mesh.

Thus, in its integrated version, the algorithm alter-
nates between degeneracy and intersection treatment
within a unique loop, until all the flaws are removed.
As for the individual sub-algorithms described in sec-
tions 4.2.2 and 4.2.3, the algorithm stops with failure
after a prescribed number of attempts (10 in our ex-
perimental implementation).

In the example of Figure 5, the original model has
407 boundary loops, 26082 degenerate triangles and
6711 intersecting triangles. All the loops have been
filled by Algorithm 1, whereas after the first itera-
tion of Algorithm 4 the model still has 31 degenerate
triangles and 8 self-intersections. After the second it-
eration of Algorithm 4 the model is completely fixed.

Summarizing, the overall geometry correction can be
implemented through Algorithm 4. The whole pro-
cedure, which includes both the topology reconstruc-
tion and geometry correction phases, is shown in Fig-
ure 6.

4.2.5 Adaptation to other domains The algorithm
presented here has been designed to process raw dig-
itized models, hence it should not be expected to pro-
duce accurate results on meshes created differently;
unsuitable models include sparsely tessellated CAD
surfaces or even digitized models which have already
been processed somehow, for example through mesh
simplification. In these cases the algorithm can be
run as well, but the modifications introduced may
easily become too coarse (see Figure 7-b). This be-
havior can be explained by observing that, differently

from raw digitized shapes, other kinds of models may
be characterized by a sparse vertex sampling, either
locally or globally. Clearly, retriangulating a simpli-
cial neighborhood in a sparsely sampled region may
easily become a macroscopic operation. Thus, an adap-
tation of the degeneracy removal phase is necessary
to process the aforementioned unsuitable models while
maintaining the modifications within tolerable bounds.

To achieve this result, in our prototype implemen-
tation we have added an optional local refinement
driven by a user-specified tolerance value. Specifi-
cally, before proceeding with Algorithm 4, the mesh
is analyzed to detect all the faulty triangles (i.e. nearly
degenerate or intersecting other triangles) having at
least an edge longer than the prescribed threshold.
Each such triangle is subdivided in four subtriangles
by splitting its three edges at their midpoints. Then,
the mesh is re-analyzed and the resulting defects are
subdivided again, and so on, until all the edges of
faulty triangles become shorter than the prescribed
threshold. An example of the effects of this improve-
ment is shown in Figure 7-c.

5 Experimental Results

The repairing algorithm described in this paper has
been extensively tested on several models, and it al-
ways succeeded. Experiments were run both on raw
scanned models downloaded from the Internet [23]
and on models created on purpose through digitiza-
tion of real objects; for this purpose, a Minolta Vivid
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Fig. 6: (a) Original raw mesh coming from the fusion of 11 aligned range images (courtesy of Aim@Shape). Note the hole
on the right and the self-intersecting facets on the left of the magnification. (b) The combinatorial manifold resulting from
the topology reconstruction phase. The hole has been filled, whereas some triangles are still self-intersecting. (c) The final
fixed mesh produced by processing the combinatorial manifold through the geometry correction phase.

910 laser scanner was used to acquire the shapes,
whereas range images were aligned and merged through
Minolta’s software Polygon Editing Tool. On the re-
sulting polygonal meshes the vertex density is rather
high and uniform, and the modifications introduced
in order to repair each geometric flaw are hardly vis-
ible unless a significant zoom is used. In numbers,
however, the distance between the original mesh and
the repaired model depends on the resolution used
by the scanner, on the distance between the surface
and the scanner’s sensor, and on the specific lens em-
ployed. In our experiments, we scanned objects whose
absolute size is at most 520 millimeters (length of the
bounding-box diagonal), the resolution of each range
image was 640 × 480 pixels, the focal distance was
approximately 600 millimeters, and a “tele” lens pro-
vided by Minolta was used. In these conditions, the
maximum distance between the original model and
its repaired version was measured using the Metro
tool [11], and we have verified that it never exceeded
0.0098 times the model’s bounding box diagonal (see
Figure 8 and Table 1). Note that on laser-scanned
models this value is comparable with the distance of
a typical outlier from the underlying surface. More-
over, such a maximum distortion is extremely local-
ized, as demonstrated by the value of the mean dis-

tance which is typically smaller by several orders of
magnitude.

Since they dealt with raw scanned models, all the
aforementioned experiments were run without the adap-
tation discussed in Section 4.2.5. Nevertheless, such
adaptation was used during the testing of the algo-
rithm on another set of 40 sparsely sampled models
(see Figure 7 for an example). For these tests, the
threshold length for edges of faulty triangles was set
to 0.005 times the length of the bounding box diag-
onal. Even in these cases, the algorithm has always
been able to terminate with success.

It is worth mentioning that the algorithm presented
here proved to be computationally efficient. As an ex-
ample, the whole repairing of the bimba model (3.7
million triangles) has taken 87 seconds, which is com-
parable with the time spent by [6] in its best run
to repair the ventilator model (269 thousand trian-
gles, Figure 11 in [6]), and is significantly better than
the 126 seconds spent by [22] to produce the fixed
woman model shown in Figure 9-(d). More timing
results are reported in Table 1.



10 Marco Attene

Fig. 7: The original woman model (a) is too sparsely sampled, and the repairing algorithm produces coarse artifacts near
formerly self-intersecting areas (b); by performing few local iterations of mid-point subdivision within such areas before
correction, the resulting patches become more accurate (c).

Fig. 8: Two examples of test models successfully repaired. Original raw data courtesy of Aim@Shape.

5.1 Comparison with existing approaches

We compared the algorithm described in this paper
with other three approaches, two employing a global
surface resampling ( [22] and [19]), and one attempt-
ing to fix defects by modifying the mesh only locally
around them [6]. Although the method of [22] proved
to be robust and always succeeded, it requires a sig-
nificant amount of resources to produce satisfactory
results. Better performances are achieved by [19] but,
in both the cases, the results are isosurfaces of dis-
crete scalar fields; hence, to provide sufficiently ac-
curate results, the resolution of the volume grids must
be significantly high, with consequent high triangle

counts in the corresponding output isosurfaces. With
respect to the method presented in [6], our approach
appears to be slightly more general for some aspects:
in [6] the algorithm is able to detect and fix only in-
tersections between different tessellated patches, and
the new triangles inserted through the dual-contouring
approach are not guaranteed to be intersection-free.
Nevertheless, we could compare our results with those
coming from an adapted version of [6] in which all
the self-intersections can be detected, without the lim-
itation of belonging to different patches. In this case,
we could verify that our approach is less invasive in
the sense that the modifications introduced are less
visible; furthermore, with a comparable accuracy, the
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Algorithm 3 Algorithm for removal of self-
intersections.

Require: A combinatorial manifold M and an integer
threshold max iterations

Ensure: A combinatorial manifoldM′ and a status notice
(success/failure)

1: M′ :=M
2: Let S be the set of all the triangles ofM′
3: Let G be a uniform 1003 voxel grid tightly enclosing
M′

4: for k = 0 to max iterations do
5: Let H be the set of voxels intersecting at least a

triangle of S
6: Check for triangle-triangle intersections within

each voxel of H
7: Let T be the set of intersecting triangles detected

above
8: if T = ∅ then
9: terminate with success /*M′ is not self-

intersecting */
10: end if
11: LetR be the union of the kth−order simplicial

neighborhoods of all t ∈ T
12: Remove R fromM′
13: Remove possible disconnected components from

M′
14: Patch the remaining gaps with a new set P of

triangles
15: S := P
16: end for
17: Let H be the set of voxels intersecting at least a trian-

gle of S
18: if S contains intersecting triangles then
19: terminate with failure /* M′ has self-

intersections */
20: else
21: terminate with success /* M′ is not self-

intersecting */
22: end if

results of our approach contain significantly less ad-
ditional triangles, and in all our experiments the re-
sults are perfectly free of any intersection or degen-
eracy (see Figure 9). As a final remark, it is worth
to remind that the algorithm presented here is de-
signed to fix meshes which are assumed to enclose
solid objects. In such a context, [6] may be difficult to
use becuase, in order to avoid introducing unneces-
sary distortion while closing all the gaps, the thresh-
old may need to differ from one part of the model
to another. On the other hand, however, the method
presented here is not suitable to treat meshes with
desired boundaries; in this regard, the approach pro-
posed in [6] gives more flexibility.

Algorithm 4 Main steps of the geometry correction
phase.

Require: A combinatorial manifoldM
Ensure: A combinatorial manifoldM′ and a status notice

(success/failure)

1: M′ :=M
2: max iterations := 10
3: for k = 0 to max iterations do
4: Run Algorithm 2 with parametersM′ and 3. Let

M̃ be the output.
5: M′ := M̃
6: Run Algorithm 3 with parametersM′ and 3. Let

M̃ be the output.
7: M′ := M̃
8: if both the algorithms succeeded andM′ has no

degenerate faces then
9: terminate with success /*M′ has no geo-

metric flaw */
10: end if
11: end for
12: terminate with failure

5.2 Limitations and Failure cases

The repairing procedure requires to access the var-
ious parts of the mesh, and unfortunately an obvi-
ous solution was not found to subdivide the input
into smaller pieces to be processed separately. To fix
huge meshes, a possibility is to use dedicated PCs

Fig. 5: Self-intersection removal in the Stanford dragon.
All the intersecting triangles were selected (bottom-left,
line 7 in Algorithm 3) and removed. The resulting holes
were patched (bottom-right, line 14 in Algorithm 3). The
rear leg region shown in the magnification was fixed in a
single interation.
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Fig. 9: An example showing a comparison of the results achieved by (b) our approach, (c) [6], (d) [22] and (e) [19]
starting from a common original mesh (a). Self-intersecting triangles are shown in blue. Besides the evident benefit in
terms of visual quality, our algorithm provides more accurate results using less triangles. In this example, the original (a)
is made of 11534 triangles, while (b), (c), (d) and (e) contain 12634, 17174, 110908 and 363776 triangles respectively. In
contrast, the maximum distance from (a) is 0.001109 for (b), 0.001391 for (c), 0.018388 for (d), and 0.006189 for (e).

equipped with large memory made accessible through
64 bit operating systems. Our 32 bit implementation
could treat models made of up to 4 million triangles
without switching to virtual memory.

The algorithms discussed in this article are not guar-
anteed to terminate with success, thus it is worth men-
tioning which are the possible causes of failure. While
Algorithm 1 fails only if the input is intrinsically not
orientable (eg. a Möbius strip), Algorithms 2 and 3
can fail if the hole-filling procedure creates unwanted
elements (degeneracies or self-intersections) at all the
iterations. Though this is extremely rare for digitized
meshes, it is possible to synthesize a pathological
case in which the configuration of the holes makes
the filling algorithm produce self-intersections at all
the iterations (see Figure 10).

6 Applications

The fully automatic nature of the tool proposed in
this article opens various possibilities. For example,
it can be incorporated as an optional post-loading
stage within novel 3D processing systems; if the in-
put can be successfully fixed, the system may activate
additional functionalities which are defined only for
meshes bounding polyhedra. Also, the new algorithm
can be plugged into a batch script to automatically fix
big shape repositories without any user intervention.
In this case, possible failures can be simply logged
and later analyzed and treated manually using appro-
priate tools [2].

Fig. 10: A self-intersecting bent tube representing a syn-
thesized failure case (top-left). After having identified
the intersecting triangles (top-right and bottom-left) the
algorithm removes them and the resulting disconnected
pieces. By attempting to minimize the normal variation, the
hole filler patches the two holes with cylindrical surfaces
(bottom-right, inner view) that intersect each other at all
the iterations.

6.1 Benchmark generation

As a practical application, the algorithm presented
here has been used to automatically produce the SHREC
2008 benchmark on watertight models [5]. After hav-
ing collected the 400 raw meshes constituting the
previous year’s version of the benchmark, we have
created a batch script to run the repairing algorithm
on each model. As a result, we obtained 400 clean
meshes that could undergo further automatic process-
ing which was necessary to create the final bench-
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mark. Most input models were already clean, and
thus were not modified by the algorithm, whereas all
the other meshes were all successfully fixed. Specif-
ically, the algorithm presented in this paper was able
to successfully fix all the 5584 degenerate triangles
and all the 17961 self-intersections present in 146 out
of 400 meshes constituting the whole dataset.

6.2 Conversion to tet mesh

The generation of tetrahedral meshes out of raw in-
put surface meshes represents a further example in
which the automatic nature of the algorithm can be
exploited. In our experiments several fixed models,
including the 400 fixed meshes discussed in Section
6.1, have been converted to tetrahedral meshes through
the tetgen open-source software tool [30]. This tool
was able to tetrahedrize all the repaired models, and
this is a further demonstration of the good quality of
the results of the algorithm presented here. The re-
sulting tetrahedral meshes could be successfully used
to test a novel shape segmentation method [3]. Fig-
ure 11 shows an example of the whole processing
pipeline, from the input raw surface mesh to the out-
put tetrahedral mesh.

7 Conclusions

The algorithm described in this paper, the experi-
mental results obtained so far and the comparison
with existing approaches, demonstrate that raw dig-
itized 3D models can be improved through ad-hoc
procedures with several advantages. Among these,
we have shown that it is possible to significantly re-
duce the distortion introduced in the fixed model and,
at the same time, it is possible to design completely
automatic conversion mechanisms. This latter aspect
is not negligible, as it makes it possible to automati-
cally correct and convert even big databases without
user intervention.

Future research will investigate strategies to compu-
tationally detect the suitability of an input model to
be repaired; we argue that the number of facets and
their sampling distribution can provide useful indi-
cations in this sense, and may lead to automatic ap-
proaches to set plausible thresholds for the adapta-
tion scheme proposed in section 4.2.5.
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Table 1: Distortion. For each model, this table reports the number of triangles in the original and in the fixed mesh, and
distance information as reported by Metro [11]: namely, the maximum absolute distance of the original from the fixed mesh,
the mean and the rooted-mean-square distances, and the maximum distance with respect to the length of the bounding box
diagonal. Distances are expressed in millimeters, with the exception of the woman and the dragon models for which no
specific unit of measurement was available. Time is expressed in seconds, and does not include input/output from/to file.

Model Fig. Input Output Max Mean Dist RMS Max Dist bb-diag time
Name Triangles Triangles Dist (×10−5) (×10−3) wrt bb-diag
chair 1 98523 101784 1.116099 1.1 0.435 0.002460 453.70 3.2
dancer 8 140804 149206 0.994584 6.9 5.676 0.002831 351.32 4.1
sofocle 11 350664 410138 0.472599 2.3 0.445 0.003317 142.48 9.4
blade 6 389103 391314 0.035633 0.1 0.087 0.000211 168.88 7.8
bimba 8 3745150 3755938 1.169993 5.2 5.297 0.002242 521.85 87.1
woman 7 11534 12634 0.001109 0.5 0.051 0.000600 1.74 1.2
dragon 5 871414 844248 0.002774 0.1 0.033 0.009748 0.27 16.1


