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Abstract 
In this paper we describe a hierarchical face clustering algorithm for triangle meshes based on 
fitting primitives belonging to an arbitrary set. The method proposed is completely automatic, 
and generates a binary tree of clusters, each of which fitted by one of the primitives employed. 
Initially, each triangle represents a single cluster; at every iteration, all the pairs of adjacent 
clusters are considered, and the one that can be better approximated by one of the primitives 
forms a new single cluster. The approximation error is evaluated using the same metric for all 
the primitives, so that it makes sense to choose which is the most suitable primitive to 
approximate the set of triangles in a cluster. 
Based on this approach, we implemented a prototype which uses planes, spheres and 
cylinders, and have experimented that for meshes made of 100k faces, the whole binary tree of 
clusters can be built in about 8 seconds on a standard PC. 
The framework here described has natural application in reverse engineering processes, but it 
has been also tested for surface de-nosing, feature recovery and character skinning. 

1. Introduction 
Modern industry is spending more and more efforts in the exploitation of 3D acquisition 
devices for diverse applications, including reverse engineering and medical imaging, while 
producers of precise acquisition tools such as recent laser scanners are focusing on improving 
the quality and flexibility of their products. As a consequence, we can now deal with huge 
volumes of rather precise data representing 3D shapes. In many contexts, however, it is 
important to understand the data acquired in order to fully exploit its potential. Unfortunately, 
in most cases the process of associating high level information to raw 3D data is hard to 
automate, and a time-consuming manual annotation work is required. In a reverse engineering 
scenario, for example, the user is typically required to track lines on the surface to subdivide it 
into simple regions which will be eventually approximated by fitting primitives. Sometimes 
such features can be detected automatically or semi-automatically [21][26], but in most cases 
the user is required to manually post-process the results to fill gaps or track features missed by 
the algorithm [29]. In the case of free-form 3D models the approximating primitives are 
typically NURBs whose parameters are determined through an automatic fitting procedure. 
When the model is built by a given set of primitives, these primitives are typically fitted to the 
data. Models belonging to this latter class are also referred to as regular models [28] and 
include CSG generated shapes, assemblies of physical primitive objects, and so on. 
While a person looking at a rendered 3D model can easily percieve a decomposition of the 
surface into interesting sub-parts such as primitive shapes, it turns out to be a rather hard task 
for a computer and forms the base of several recent research works categorized under the term 
surface segmentation. This field of investigation is becoming more and more important as a 
support to methods for shape reasoning and understanding [2][4], in which the identification 
of a high-level structure, or signature, is often required to perform the difficult task of 
abstracting a class of similar shapes. 
Broadly speaking, segmentation algorithms attempt to exploit geometric information to infer a 
decomposition of the surface that corresponds to the one that experts would produce manually. 



The concept of good segmentation, however, strongly depends on the context in which it will 
be used. In the broadest scenario of supporting the process of shape understanding, methods 
based on intrinsic characteristics of the shape, such as curvature and topology, tend to group 
together parts of the model having a kind of coherence and/or uniformity. In [2] and [4], for 
example, Morse theory is used to partition a 2-manifold in regions having a prescibed 
topology; once such a partitioning has been determined, regions are connected together to 
form an Extended Reeb Graph structure representing the signature of the shape. The 
identification of regions of constant curvature has been addressed in [16], where a multi-scale 
method to evaluate the surface curvature has been introduced. Being a multi-scale approach, 
the algorithm produces several segmentations (one for each scale), so that a more complete 
interpretation of the shape is supported. 
In some particular contexts, such as the one addresed in this article, more specific and 
effective methods may be used which exploit an a-priori knowledge of the shape. We tackle 
the problem of decomposing a triangulated surface into areas with prescribed characteristics. 
Specifically, we present a framework to compute a hierarchical segmentation of a given shape 
into connected regions approximated by primitives belonging to a given set. The set of 
primitives to be used is arbitrary, and does not influence the validity of the framework. The 
reminder of the paper is organized as follows: In section 2, previous work on mesh 
segmentation is classified and discussed. In section 3, the hierarchical face clustering method, 
which is the basis of our work, is described. Section 4 provides an overview of our framework, 
while in section 5 the computation of the parameters of some fitting primitives is explained. 
Besides the mathematical foundations described in section 5, we provide some suggestions for 
an efficient implementation in section 6. Finally, section 7 reviews some application contexts 
in which our framework is particularly useful, and we conclude the paper in section 8 by 
discussing potential improvements of the method, extensions and future research directions. 

2. Prior Art on Mesh Segmentation 
In the more specific context of retrieving the underlying structure of regular models, which is 
the field of investigation of this paper, we can identify segmentation algorithms within two 
main classes: 
• Feature-Based Detection – Methods belonging to this class try to follow the same path of 

the human expert, and thus attempt to determine surface regions indirectly first by 
computing a set of feature lines and then by splitting the surface through a network of such 
features. 

• Direct Region Detection – Methods of this type group faces and vertices into regions 
through an estimation of approximating primitives. Some approaches grow the regions 
starting from seed faces, while some others follow a top-down paradigm and split big 
regions into smaller ones that can be better approximated by the primitives employed. 

Both the algorithm classes have their advantages and drawbacks, but none is sufficiently 
accurate in general and it is often necessary to refine the automatic process by a human 
intervention to clean the results. 

Feature-Based Segmentation 
The main difficulty in this class of algorithms is the automatic detection of feature lines. When 
the model is a height-field, for example, lines of discontinuity are used to define the so-called 
surface primal sketch [18]. In the more general case of triangulated surfaces, typical methods 
are based on fold detection, that is, regions of the surface having a high principal curvature are 
used to extract feature lines. If, for example, the maximum of the two principal curvatures 
exceeds a prescribed threshold, the vertex is probably part of a fold [32]. In [22] 
morphological operators adapted to triangle meshes are used to detect the presence of folds, 
while in the different setting described in [30] curvature extrema are computed to identify 



perceptually salient surface regions which are then turned into feature lines through a 
skeletonization procedure. When feature lines are not actually present in the model because 
they have been chamfered by the sampling process, they can be reconstructed starting from the 
neighboring smooth regions and tagged for further processing [3]. In a different setting, the 
features may be not completely sharp, and surface primitives may be separated by blended 
edges. In these cases, a feature sensitive metric may be used as described in [19]. 
For the purpose of segmentation, however, all the above mentioned methods are not generally 
sufficient as they typically produce gaps in the boundaries of the regions, and such a sparsity 
causes serious difficulties when determining fairly bounded regions. 

Direct Segmentation 
Instead of deriving the regions starting from their boundary, direct methods go straight to the 
identification of the regions as sets of adjacent faces or neighboring points. In this context, 
several approaches are based on region growing; starting from few seed points, either 
randomly selected or determined starting from some geometrical criteria, each region is 
constructed by expanding the corresponding initial seed [24][7][23]. When simple primitives 
such as planes are required to approximate the regions, the method proposed in [7] provides an 
extremely efficient segmentation using Lloyd’s partitioning approach [13]. 
After a first coarse segmentation based on a feature-based approach, Várady et al. [28] classify 
each region as simple or multiple, depending on whether the region can be effectively 
approximated by one of the primitives employed or not. In the latter case, each multiple region 
is analyzed and partitioned through dimensionality filtering on the Gaussian sphere. 
The main difficulty in region growing approaches is the choice of the seed points and, in 
particular, of their number. Even if one assumes that the number of regions is known, 
however, region growing approaches may be easily trapped in local minima, and heuristic 
techniques are required to escape from such situations [7]. 
The hierarchical segmentation introduced in this paper does not require any seed element to 
start from, it is extremely efficient and produces a hierarchy of clusters without requiring any 
parameter to be set by the user. 

3. Hierarchical face clustering 
The algorithm proposed in this paper is a variation of the hierarchical face clustering (HFC) 
method described in [8]. The basic idea in the HFC approach is to merge neighboring triangles 
into representative clusters. Here a cluster is a connected set of triangles, not necessarily 
simply connected, which can be approximated by a simple primitive. In [8], for example, 
clusters are approximated by fitting planes computed through principal component analysis 
[11], and the cost of merging a set of triangles into a single representative cluster is the 
integral L2 distance of its vertices from the fitting plane. The method produces a hierarchy 
which can be represented by a binary tree of clusters. 
To describe the main points of the HFC it is convenient to fix some notation rules. 
Let M=(V,E,T) be a manifold triangle mesh, possibly with boundary. The dual graph D=(C,A) 
of M is defined as follows: each node of C corresponds to a triangle of T, and there is an arc 
(dual edge) in A connecting two nodes in C if the corresponding triangles in M share an edge. 
Now, if one considers each node of such a dual graph to represent a cluster (initially made of a 
single triangle), merging two triangles into a single representative cluster corresponds to 
contracting a dual edge into a single node, that is, the two nodes of the arc are identified and 
the adjacency relations are updated accordingly (see Figure 1). In the HFC approach a priority 
queue is created in which all the dual edges are sorted based on the cost of their contraction. 
At each step, the dual edge with lowest cost is popped from the queue, it is contracted, and all 
the edges incident to the new representative node are updated, that is, their cost is re-computed 



and their position in the queue is updated according to the new cost. Using the cost described 
in [8] produces a hierarchy of clusters which can be efficiently approximated by planes. 

(a) (b) (c) 

 
Figure 1: In (a) a triangle mesh and the corresponding dual graph are depicted. In (b) an arc of the dual graph 
has been contracted, and the two triangles corresponding to the dual arc’s end-points have been marked as 
belonging to the same single cluster. In (c) another arc has been contracted producing a resulting cluster made 
of three triangles. 

4. Overview of the segmentation framework 
Our segmentation algorithm is based on a variation of the HFC approach. In our framework, 
the type of primitive to be fitted to the triangles of a cluster is picked from a given finite set. 
Specifically, for each primitive type the corresponding fitting parameters are computed and the 
approximation error evaluated. The cost of merging a set of triangles into a single 
representative cluster is the minimum of the approximation errors computed against the 
primitives. If, for example, the algorithm is required to fit planes and spheres, for each 
potential contraction it is necessary to compute 1) the coefficients of the best fitting plane and 
2) the coefficients of the best fitting sphere; then, the approximation error is evaluated against 
both the plane and the sphere, and the minimum one is considered for re-ordering the queue. 
In Figure 2 two examples of clustering are shown in which planes, spheres and cylinders have 
been used. 

 

 
Figure 2: Example of clustering of two models in regions fitted by planes, spheres and cylinders. The models 

shown on the left and on the right have been segmented using 21 and 45 clusters respectively. 

Summarizing, the sturcture of the algorithm is the same as in the HFC approach, that is, at 
each step a dual edge is popped from the priority queue, it is contracted, and the queue is 
updated consequently. What changes is the cost assigned to each dual edge, which is 
computed by simulating the contraction and by computing the error against each of the fitting 
primitives employed to approximate the resulting cluster. 
The evaluation of the approximation error is a delicate issue, and somehow it depends on 
which assumptions are made about the triangle mesh being analyzed. If the mesh has been 
directly obtained through interpolation of a set of scattered points, for example, one can 



reasonably assume that the only reliable information is the position of the vertices. In such a 
case an L2 error may be simply computed as the sum of the squared distances of the vertices 
from the fitting primitives [8]. If, on the other hand, the mesh is the result of a simplification 
process, the triangles of the mesh may incorporate part of the geometric information of the 
removed vertices. In this latter case, it might be more appropriate to integrate the squared 
distances over the whole surface [7].  
In the framework described in this paper, however, deriving closed-form expressions for 
integral squared distances might not be easy for certain kinds of primitives, and relying on 
numerical integration becomes prohibitive in terms of computational costs. Thus, if one wants 
to take into account the geometric information carried by triangles, the algorithm provides the 
possibility to weight the distances computed at vertices. Specifically, for each vertex v a 
restricted Voronoi area a(v) is computed which corresponds to a third of the total area of the 
triangles incident at v [15] and belonging to the cluster under consideration. The integral L2 
error is then approximated by the weighted sum of the squared distances of the vertices from 
the fitting primitive. Notice that such an approximation is nothing but a numerical integration 
in which the domain is discretized at vertices. 

5. Fitting Primitives 
In this section we describe how to compute the parameters of a small family of primitives 
(planes, spheres and cylinders) that we used to implement and test our segmentation 
framework. 

Fitting Planes 
To compute the best fitting plane to a set of triangles we make use of a classical method based 
on Principal Component Analysis [8][7]. Specifically, we compute the (possibly weighted) 
covariance matrix Covv of the vertices of the cluster: 
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where vi is a vertex and a(vi) is the restricted Voronoi area of vi. If a non-integral error 
evaluation is required, a(vi) can be set to 1 for all the vertices. 
The best-fitting plane passes through v , and its normal n is the eigenvector corresponding to 
the minimum eigenvalue of Covv. The L2 fitting error can be computed through: 
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Fitting Spheres 
The determination of the parameters (center and radius) of the least-squares best fitting sphere 
to a set of 3D points can be formalized as follows: 
Let P be a set of n points (xi, yi, zi), and let (x-cx)2 + (y-cy)2 + (z-cz)2 - r2 = 0 be the implicit 
equation of the sphere S of radius r centered at c=(cx,cy,cz). The squared Euclidean distance of 
a point pi=(xi, yi, zi) from that sphere is: 
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In the least-squares sense, computing the best fitting sphere to the set of points P amounts to 
determining the center (cx,cy,cz) and the radius r such that the sum of all the squared distances 
is minimized, that is: 
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The above problem is non-linear and may be solved using the Gauss-Newton method [25]. In 
our framework, unfortunately, using such a technique to compute the exact optimum becomes 
prohibitive in terms of computational cost, so we simply strive to find a good fitting using the 
concept of algebraic distance [20]. To do this, the implicit equation of the sphere may be re-
written as: 

0222 2222222 =−−−−+++++ rzcycxcccczyx zyxzyx  
which, in vector form, is equivalent to: 
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where the four unknowns cx, cy, cz and r have been isolated in a single vector. Substituting x, y 
and z with the coordinates of the points in P we obtain the following over-determined linear 
system: 
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which can be solved in the least-squares sense by computing w = (ATA)-1ATb. 
To accommodate this framework to the case of weighted points, we simply multiply each 
equation of the system by the corresponding weight. 
Notice that if all of the points lie exactly on a sphere, then the solution of the above system 
represents exactly that sphere. In the other cases where the residue is not null, the sphere 
represented by w is sufficiently close to the one computed through iterative approaches such as 
the Gauss-Newton method or other sorts of non-linear regression [10]. We have experienced 
that such a level of precision is enough for the purpose of mesh segmentation, where the user 
is typically interested in few clusters made of numerous faces. In other application contexts, 
however, it may be necessary to obtain a more precise fitting; in such cases the approximation 
described above can be used to initiate a regression. 
We have also experimented the direct fitting method described in [20], in which the sphere’s 
equation is re-written as: 

0)( 222 =++++++ EDzCyBxzyxA  
and the minimizing vector (A,B,C,D,E) is found under the constraint: 

14222 =−++ AEDCB  
Such a method is significantly more precise when the number of points is limited, while it is 
virtually equivalent to the non-constrained version (with A=1) when such a number grows. On 
the other hand, this method requires an additional equation representing the constraint and, by 
using Lagrange multipliers, finding the minimum amounts to solving a 5x5 eigensystem, 
which is slower than inverting a 4x4 matrix. In many application contexts, including mesh 
segmentation, the user is typically interested in the approximation of dense models with few 
primitives, hence each primitive usually fits numerous points; In these cases the results of the 



non-constrained method are precise enough and the increase of computing time due to the 
solution of the eigensystem is not justified. 
Having established the parameters c and r of the sphere, the L2 fitting error can be computed 
through: 
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Fitting Cylinders 
We found it convenient to represent each approximating cylinder through its radius, a unit 
vector parallel to its axis, and a point belonging to the axis that we call the center of the 
cylinder. 
Given a connected set of triangles (from now on, the cluster), the problem can be summarized 
as finding the parameters of a cylinder that fairly approximates that set. This problem can be 
tackled by first computing the direction of the cylinder axis starting from the triangle normals. 
Roughly speaking, we note that the normal field of the cluster is similar to the one of an ideal 
cylinder if the normal variation is roughly null in one direction and maximal and roughly 
constant in all the orthogonal directions computed at each point of the cluster. Since the cluster 
is piecewise-linear, the only points at which the normals change are points on edges, and the 
normal variation can be integrated over the whole cluster and represented in matrix form as: 
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where ei is an internal edge of the cluster, |ei| is its length, ēi is a unit vector parallel to ei and 
β(ei) is the signed angle between the normals of the two triangles sharing ei (positive if 
convex, negative if concave). Notice that when a cluster is obtained as the intersection of a 
triangle mesh with a ball of radius B centered at a vertex v, Covc can be divided by the area of 
the cluster and the result is the curvature tensor at v as defined in [1], as long as the cluster is 
homeomorphic to a disk. The direction n of minimal normal variation of the cluster is 
identified by the eigenvector corresponding to the maximum eigenvalue of the symmetric and 
positive semi-definite matrix Covc. 
Having established the direction n of the fitting cylinder, the remaining parameters to be 
determined are its radius and its center. We note that this operation can be reduced to the bi-
dimensional best-fitting circle problem by projecting the vertices on the plane having n as 
normal and passing through the center of mass of the cluster. Specifically, let cm be the center 
of mass, we compute an orthonormal basis <n, ex, ey> (ex and ey may be the remaining two 
eigenvectors of Covc or any other pair of orthogonal vectors which are also orthogonal to n) 
and transform each vertex vi to ℘(vi) =  <(vi-cm)ex, (vi-cm)ey>. The center (ĉx, ĉy) of the 2D 
best fitting circle to such a set of transformed points is then transformed back to the original 
coordinate system, that is, c = cm+ex ĉx +ey ĉy. 
The parameters of the 2D fitting circle can be calculated as described previously for fitting 
spheres by simply reducing the dimensionality of the problem. 
Having established the parameters n, c and r of the cylinder, the L2 fitting error can be 
computed through: 
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where × denotes the cross product. 
In the context of fitting cylinders to point clouds, significant previous results have been 
obtained by Várady et al. [28] and by Chaperon and Goulette [5].  Both these works make use 
of the Gaussian image of estimated surface normals. Specifically, they observe that the 
normals of a cylinder generate a circle on the Gaussian sphere, and thus look for such circles 



to estimate the axis of the fitting cylinder. The direction of such an axis is determined as the 
normal of a plane passing through the origin and such that the sum of squared distances to the 
points in the Gaussian sphere is minimized. This approach works well in the context addressed 
in [28] and [5], where surface normals are estimated using an arbitrarily large support to cope 
with noise. This is made possible by the assumption that raw data have been roughly 
segmented through a prior feature-based method. Within a hierarchical approach such as ours, 
however, such an assumption does not hold, and a relatively small amount of noise may 
heavily spoil the results provied by the method used in [28] and [5] (see Figure 3). Conversely, 
the method based on the analysis of the normal variation described above proven to be rather 
robust even when the amount of noise grows significantly. Furthermore, it must be considered 
that in our context the evaluation of noise is more delicate due to the multiresolution nature of 
the clustering, that is, what is considered noise at a given scale may be seen as a surface 
feature at finer resolutions. 
 Ideal normals Perturbed normals 

 
Figure 3: The nearly cylindrical patch shown on the left has been obtained by perturbing an ideal cylindrical 
patch with a small amount of noise. The normals of the ideal patch have been mapped on the Gaussian sphere 
(a), and the best fitting plane passing through the center o correctly identifies the axis of the cylinder. The 
perturbed patch has been mapped too (b) but, in this case, the normal of the best fitting plane is nearly 
orthogonal to the cylinder’s axis. 

6. Implementation details 
At each step of the algorithm a dual edge is collapsed into a single representative node 
corresponding to a new cluster that, in its turn, corresponds to a fitting primitive. The costs of 
all the dual edges incident to the new node must be updated. Thus, for each of them new 
fitting primitives must be estimated that approximate the set of all the triangles belonging to 
the two clusters, and the approximation errors must be re-computed based on these new 
primitives. Without particular attention the computational cost of these operations can easily 
become prohibitive, so it is important to incrementally compute most of the entities (i.e. the 
matrices Covc, ATA, ATb, …) and store partial results within the data structure. Moreover, the 
tree of clusters may become unnecessarily unbalanced and cause a huge number of unused 
updates in the queue. For example, in a mesh which is perfectly flat the error is null (or nearly 
null due to numerical imprecision) for each dual contraction. In such a case it may happen that 
a single cluster grows unnecessarily and forms a dual node having an extreme degree. In our 
implementation we used a threshold value1 below which the error is considered numerical 
noise and thus is snapped to zero. During the re-ordering of the queue, if two edges have both 
a null cost then, instead of choosing one of them randomly, we give priority to the one whose 
contraction generates the node with lowest degree. 

                                                 
1 We found that on the Linux-i686 system that we used for testing, a threshold of 1.0*10-15 is a good choice when 
using integral L2 error metrics. It must be considered, however, that a different system may have a different 
robustness. 



On a P4 1.7GHz machine equipped with 512Mb of RAM and running Linux, our 
implementation is able to build the complete binary tree of clusters of a triangle mesh made of 
100K faces in about 8 seconds. 

7. Applications 

Reverse Engineering 
The most natural applications of our framework are to be searched in reverse engineering [27]. 
When a product is digitized to be re-used within a CAD environment, it is often necessary to 
recover how the original model was designed. In this context, most of the previously published 
work make extensive use of heuristics and/or requires the manual selection of a number of 
parameters whose effect is not always clear to the user. In contrast, our framework is 
completely automatic and, at the same time, customizable. If the model is known to be made 
of a well defined set of primitives, as typical, for example, for mechanical objects, the 
algorithm may accept a plug-in for each of them in which the computation of the fitting 
parameters and the error are implemented. Moreover, being a greedy method, the level of 
accuracy is somehow reflected by the cluster hierarchy which, once computed, may be 
interactively navigated by the user through a slider which sets the desired number of clusters 
or a threshold error (see Figure 4 and Figure 11). 
Note that, by definition, at the beginning each triangle constitutes a single planar cluster, thus 
each cluster is best fitted by a plane. Differently from other methods [9], however, in our 
approach clusters of different type may be straightforwardly aggregated to form a bigger 
cluster; the type of such a new big cluster is independent of the type of the constituting ones, 
while it is determined exclusively based on which primitive best fits all its triangles. This 
makes our method particularly robust in case of noisy input meshes, in which at early stages 
small clusters may happen to be of the “wrong” type (see Figure 4, d) due to the noise but, as 
the clustering proceeds, their type rapidly converges to the expected one (Figure 4, c). Clearly, 
when too few clusters remain, the corresponding fitting primitives can no longer approximate 
the shape in a fair way (Figure 4, a and b), and deciding how many clusters are necessary for 
such a fair approximation is a matter of threshold errors which, for now, must be defined by 
the user based on his/her knowledge. 
 

   

a b c d 

 
Figure 4: Example of interactive navigation of the cluster tree through the slider labeled “Num. Clusters”. 

Although this procedure does not compute the correct segmentation automatically, the 
possibility to browse the hierarchy at interactive speed is a powerful support to the user that, 
based on the knowledge that the error grows proportionally to the number of clusters, may 
easily locate the required level in the hierarchy as shown in Figure 4, c. 

Mesh denoising and fairing 
To improve the quality of a triangle mesh obtained through non-contact acquisition devices 
such as laser scanners, one has to deal with two main problems: 1) the noise in the data and 2) 



the lack of information about sharp features. If the model is known to be made of a well 
defined set of primitives, each vertex of the mesh may be snapped on the primitive fitting the 
corresponding cluster; if the vertex belongs to the boundary of a cluster, then it may be 
snapped once for each of the clusters incident to the vertex. Such a procedure has the twofold 
effect of distributing the error and of sharpening the chamfered features (see Figure 5).  

 

 
Figure 5: Example of a resampled model in which the sharp edges have been chamfered (on the left). On the 
right, the same model is shown after the de-noising process based on a segmentation in 12 regions. 

To have a quantitative point of view, we have resampled some original meshes by intersecting 
a uniform grid with the surfaces. The resulting re-meshes have been perturbed with variable 
amounts of noise; finally, for each of them, we have computed the L2 distortion against the 
corresponding original meshes. We have observed that using the de-noising procedure 
described above reduces the L2 distortion up to one order of magnitude (see Figure 6). 

 

Symmetric L2 and L• distortions in units 
of the bounding box diagonal. 
 
L2([a], [b]) = 5*10-4 
L•([a], [b]) = 6.2*10-4 
L2([a], [d]) = 4.8*10-5 
L•([a], [d]) = 7.1*10-5 
 

[a] Original [b] Re-sampled and 
perturbed 

[c] Segmented 

[d] De-noised 

 
Figure 6: An example showing the decrease of distortion obtained thourgh our de-noising procedure. The error 
values reported in the box have been computed through the publicly available Metro tool [6]. 

Automatic segmentation and skinning for character animation  
Natural shapes, and in particular humans and animals, form a class of 3D models whose shape 
can be effectively abtracted through approximating cylinders. If only this kind of primitive is 



used, the clustering algorithm described so far represents an automatic way to derive a 
hierarchical view of the shape (see Figure 7) as described by Marr in [14]. 
 
 

 
Figure 7: Some models along with the corresponding abstractions represented by the fitting cylinders. For the 
horse model, two levels of resolution are shown along with the corresponding  face clustering. 

In this context, our framework becomes particularly useful as a support for skinning purposes 
to eventually deform or animate such a class of triangle meshes in an intuitive and user 
friendly manner. Once the cluster hierarchy has been computed, in fact, it may be interactively 
navigated by the user through a slider which sets the desired number of clusters. By rendering 
triangles using a unique color for each cluster, the user has a visual feedback of the current 
mesh partitioning. When settled, the user may require the automatic creation of a deformation 
skeleton made of bones and joints, and use it to interactively deform the segmented mesh (see 
Figure 8). 
We have implemented a minimal interactive GUI which allows the user to perform such a kind 
of editing, and briefly sketch here the foundations of the method. 
Let D be the graph in which the clusters are nodes, and arcs join adjacent clusters (i.e. the dual 
graph defined in section 3). The combinatorial structure of the initial skeleton S = (J,B) is 
defined as the dual graph of D, that is, each joint in J corresponds to an arc of D, and each 
bone in B corresponds to a cluster of D. If a cluster is adjacent to only one other cluster, we 
add a virtual joint representing the other end-point of the bone. Clearly, such a skeleton may 
be rather complex when the number of clusters is high, and many bones and joints do not 
correspond to an intuitive notion of mesh part to be deformed. Hence it is convenient to tag 
skeleton elements so that non-intuitive bones and joints are not shown. We chose to classify 
joints into two categories: sensitive joints and locked joints. Sensitive joints may be moved by 
the user, and correspond to joints having at most two incident bones; all the other joints are 
locked, are rendered differently and cannot be moved. Moreover, to simplify the interactive 
environment in which the user acts, we chose to hide all the bones that cannot be moved, that 
is, the bones connecting two locked joints; finally, if all the bones incident at a joint are 
hidden, then that joint is hidden as well. 
Once the skeleton is available, vertices can be attached to influencing joints, and their position 
after a deformation can be computed as described in [12]. 



 

 
Figure 8: The model of a horse has been segmented in 87 clusters out of which the deformation skeleton has been 
computed (top row). By dragging the sensitive nodes the geometry of the model has been interactively modified. 

8. Discussion 
The hierarchical segmentation presented in this paper is fast (see Table 1), robust to noise, and 
suitable to produce useful segmentations of irregularly sampled models (Figure 9). Due to its 
greedy nature, however, it is worth to discuss how it behaves when compared to variational 
approaches. 

 
Figure 9: Segmentation of a model with extremely non-uniform vertex distribution. 

We have experimented a variational version of the method that, starting from a given 
clustering resolution, attempts to improve the quality of the segmentation using Lloyd’s 
partitioning approach [13], as previously done for fitting planes in [7]. We have concluded, 
however, that in practical cases the level of improvement is far too limited to justify such an 
expensive post-processing. In our experiments, in fact, the variational approach required 
nearly 20 times longer than the corresponding greedy version with comparable results. A 
method using such a variational approach is described in a very recent work by Wu and 
Kobbelt [31], where the authors report nearly three minutes to process models up to 100k 
faces. 



Model name Number of Triangles Computing Seconds 
Fandisk (Fig. 2, left) 12946 0.64 
Casting (Fig.2, right) 10224 0.66 

Drill (Fig. 4) 14090 1.29 
Mechanical Part (Fig. 11) 24822 1.88 

Bunny (Fig. 10) 69449 7.01 
Fandisk remeshed 1 101207 8.51 
Fandisk remeshed 2 207136 22.15  

Table 1: Time required to compute the whole hierarchy for some of  the models presented in this paper. Time is 
relative to our prototype running on a P4 1.7 GHz, 512 Mb RAM and running Linux. 

There are cases, however, in which the globally best fitting n primitives need to be found for 
an object; in these cases, a greedy hierarchical approach such as ours is not appropriate, and 
well-designed variational methods provide better results (see Figure 10, top row). To show a 
qualitative comparison of our greedy method with the variational version of [31], we extracted 
31 clusters out of the hierarchy computed for the bunny model (Figure 10, bottom row) and 
applied the same vertex to proxy projection described by Wu and Kobbelt to generate the 
stylized bunny depicted on the right. 

 
Figure 10: Top row: The same 2D shape segmented using two fitting rectangles by a variational approach (left) 
and by a greedy hierarchical method such as ours (right). The dashed yellow line indicates where the red cluster 

would need to be cut to obtain a segmentation in three clusters. Bottom row: The bunny model was clustered 
(left) using 31 fitting primitives; each vertex was then snapped to the closest point (right) of the corresponding 

primitive. 

9. Conclusions and future research 
The segmentation framework described in this paper represents a flexible and completely 
automatic way to partition the surface in a hierarchical manner. Being a greedy approach, 
there is no issue related to the choice of seed points, and the number of regions can be 
interactively selected by the user once the hierarchy is computed. No network of features is 
required for the segmentation, thus all of the problems related to discontinuous feature lines 
are avoided. Although it has been described for planes, spheres and cylinders, the framework 
is well-suited for including the definition of several other primitives to be fitted such as tori, 
cones, or geons, to cite a few. Various fitting primitives are well discussed in the literature 
[28][17], and we believe that adapting these methods to our hierarchical setting is a rather easy 



task. Moreover, it is also easy to adapt them to handle different error metrics such as, for 
example, the L¶. 
All of these aspects form the base for our future research plans, which also include the study 
of the error evolution along the hierarchy. About this last aspect, we have observed that for 
regular objects there are some jumps in the graph representing the error at various clustering 
resolutions, and we plan to analyze such discontinuities to automatically detect the most 
significant resolutions (i.e. the number of regions) for a given shape. 
It seems also promising to study how such a clustering can be applied in a geometry 
compression environment. The error-reduction due to the snapping of vertices onto fitting 
primitives, in fact, is expected to allow coarser quantizations of the geometric information. 
The larger error introduced may be then reduced to acceptable values through de-noising and 
feature recovering as described in section 7. Eventually, if necessary, such an approximated 
geometry may be refined in a lossless fashion by encoding small corrective vectors 
represented through local coordinate frames relative to the approximating primitives. The 
compressed representation, however, must necessarily encode the parameters of each 
primitive, thus keeping the number of primitives low is also important, and finding the best 
trade-off between this number and the size of the compressed parameterized vertices may be 
hard, but would promise very interesting compression rates for the class of models addressed. 
Finally, although our method is an extension of [8], it is important to note that the two works 
have applications in different areas. Thus, if one looks for a clustering algorithm to implement 
efficient collision detection or multiresolution radiosity, the original method described in [8] is 
sufficient, while the extensions introduced in this paper are necessary to tackle problems such 
as the ones discussed in section 7. 

 

2 clusters 

139 clusters26 clusters 
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Figure 11: Four segmentation levels of the same model extracted from the binary tree of clusters. Each level was 

obtained by specifying the desired number of clusters through an interactive slider. 
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