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Abstract 
 
 

A method for the extraction of the Extended Reeb 
Graph (ERG) from a closed 3D triangular mesh is 
presented. The ERG codes the relationships among 
critical points of the height function associated to the 
mesh, and it can represent isolated as well as 
degenerate critical points. The extraction process is 
based on a re-meshing strategy of the original mesh, 
which is forced to follow contour levels. The 
occurrence and configuration of flat areas in the re-
triangulated model identify critical areas of the shape, 
and their relationships allow the reconstruction of the 
global topological structure of the shape. 

 
 

1. Introduction 
 
 
The combination of geometry and topology 

provides interesting insight into several computer 
application problems that involve shape modelling and 
understanding.  In particular, computational topology 
has been proposed to identify a new field of research in 
which topological problems are approached taking into 
specific consideration the discrete domain and the 
computational requirements which characterise digital 
applications [1], [2]. Among the different disciplines 
related to topology, differential topology deals with the 
relations among shape characteristics and properties of 
the surface defining the shape. In particular, Morse 
theory states that the topology of a given manifold can 
be described by analysing the critical points of a 
smooth function defined on the manifold itself [3][4]. 
In other words, global properties and connectivity 
information of a shape can be computed provided that 

the critical points of a smooth function defined over the 
shape are known. 

In this context, an interesting topological structure, 
known as Reeb graph, codes the surface shape by 
storing the evolution of contours obtained by 
intersecting the surface with a plane, which sweeps 
along a predefined direction.  A method for the 
extraction of Reeb graphs from triangular meshes 
representing bi-variate surfaces (2.5D surfaces), has 
been presented in [5][6]. An efficient solution to 
automatically compute the Reeb graph of a mesh is to 
compute a number of parallel slices in the given 
direction, and then study the triangulation of the 
contour lines, using the contours as line constraints. 
First of all, it can be easily seen that flat areas of the 
constrained mesh localize surface critical points. Then, 
since vertices of the constrained mesh may only belong 
to contours, the topological adjacency of critical points 
can be reconstructed using edge-based adjacency 
among contours.  The method can be applied to a wide 
class of surfaces, in particular surfaces whose critical 
points are not isolated, a useful advantage when 
dealing with real objects. 

In this paper, the extension of this approach to 
closed 3D meshes is presented. The main difference 
consists in the intermediate step of constrained 
triangulation. The reconstruction of a constrained 
triangulation from the computed contour lines would 
require, indeed, knowledge of the shape topology for 
solving correspondence and branching problems 
[7][8][9], giving rise to a classical "chicken and egg" 
problem. Therefore, we have adopted an approach 
based on a re-meshing of the original surface, so that 
all its vertices will eventually lye on the computed 
contour levels. Once the shape is re-meshed, flat 
regions can be again used to locate critical points, 
using a slightly modified classification scheme as for 



the 2.5D case, and their relationships will be easily 
tracked using the contour constraints. 

The reminder of the paper is organized as follows. 
First, the theoretical background of this work is briefly 
described with reference to previous work in this area. 
Then, the approach for constructing the Reeb graph is 
outlined and the re-meshing strategy adopted to extend 
the approach to 3D closed meshes is presented. Results 
and some discussions on the advantages and limits of 
the method conclude the paper. 

 
2. Background 

 
In applications related to geometric modelling, it is 

quite natural to choose the height function and its 
criticalities to study a given shape. Intuitively, the 
height function h of a smooth manifold M, embedded 
into the usual three-dimensional Euclidean space, is the 
real function which associates to each point on the 
surface its elevation, that is, h(P)=h((xP,yP,zP))=zP for 
every P∈ M. 

The critical points of h, and in general of any real 
smooth function defined on M, are the points of M at 
which the gradient is zero, i.e. ∇(h(P))=0 or, stated 
differently, the tangent plane is horizontal. Moreover, h 
is called Morse if all of its critical points are non-
degenerate, that is, if the Hessian matrix H of the 
second derivatives of h is non-singular at that point. In 
particular non-degenerate critical points are isolated; 
therefore, surfaces with plateaux or volcano rims do 
not comply with the definition of Morse function. 
Figure 1(a) depicts an example of degenerate fourth 
order saddle while in (b) an example of non-isolated 
critical points is shown. 

 

   
 (a)  (b)   

Figure 1. Examples of degenerate critical 
points: a quadriped saddle (a) and a line 
of maximum points (b). 
 
Critical points of the height function, commonly 

known as peaks, pits and passes, are useful for shape 
characterization as they are considered among the basic 

elements by which shapes are perceived and organised 
[10]. The configuration of critical points has been used 
for shape description by several authors for different 
applications. In [11], for example, the configuration of 
critical points is used to code and classify the shape of 
a smooth function, while in [12] the configuration of 
critical points is used as a constraint for the 
simplification of meshes while preserving the topology 
of the shape. In [13], a wave traversal algorithm is 
proposed to navigate a triangular mesh according to 
distance criteria among elements in the simplicial 
mesh. A similar wave-front propagation has been used 
to deduce the global topology from volume data set in 
order to extract correct polygonal meshes representing 
iso-surfaces [14]. 

Starting from the Morse theory, an interesting 
topological structure has been defined by Reeb, which 
represents a smooth surface by coding the evolution of 
its contour levels [15]. More precisely, the Reeb graph 
of a manifold M with respect to a real valued function f 
is defined as follows: 

Definition: Let f : M →ℜ be a real valued function 
on a compact manifold M. The Reeb graph of M wrt f 
is the quotient space of Mxℜ defined by the 
equivalence relation “~”, given by: 

 
(X1, f(X1)) ~ (X2, f(X2)) ⇔ f(X1) = f(X2) and X1 and 

X2 are in the same connected component of f -1(f(X1)) 
 
 

  

h

 
 

(a)              (b) 
Figure 2. The Reeb equivalence classes 
on a bi-torus (a) and its graph 
representation (b). 
 
In practice all points of a compact manifold having 

the same value under a real function and whose pre-



image belongs to the same connected component are 
collapsed into one element. Since the contour topology 
changes only in correspondence of critical levels of the 
height function, the Reeb quotient space can be 
described as a graph [3] (see Figure 2). 

The use of Reeb graphs has been already addressed 
in computer graphics [16], [17], but it has been 
generally limited to Morse mapping functions. 
Therefore, degenerate critical points are not allowed or 
handled by local perturbations of the surface, which 
introduces artefacts not corresponding to any shape 
features, thus leading to imprecise shape description 
[16].  

 
3. Critical areas and graph construction 

 
Given a triangular mesh T representing a single-

sided two-manifold surface without boundary, we want 
to compute a topological graph with the same 
properties as the Reeb graph. The Extended Reeb 
Graph representation (ERG) for 2.5D surfaces 
represented by triangular meshes has been fully 
described in [5]. The ERG derives from the direct 
application of the Reeb graph definition to degenerate 
as well as non-simple height functions, which allows us 
to consider a broader class of surfaces. The main idea 
is to consider critical areas instead of critical points 
and identify, starting from them, the smallest area on 
the mesh whose behaviour is topologically equivalent 
to the critical area (influence zones). Influence zones 
are the starting points for identifying the portion of the 
mesh contributing to the definition of Reeb graph arcs.  

More precisely, a sufficiently dense number of 
sections of a triangulated mesh T is computed and the 
mesh T* is defined as the triangulation of the contours, 
constrained to the contours themselves, i.e. the edges of 
T* never cross a contour. In T*, maximum and 
minimum points of T are localised by flat regions 
whose vertices belong to the same contour [5] [18]. 
Saddle points are localised either by flat areas having 
vertices at the same elevation but belonging to different 
contours (see Figure 3(a)), or by regions composed of 
two adjacent non-flat triangles such that their common 
edge is flat (see Figure 3(b)). These regions of T* are 
defined to be the critical areas of T and they may be 
simply as well as multiply-connected: in Figure 3(c), an 
example of multiply-connected critical area of 
maximum is shown. 

 

  
  (a) (b) 

 
(c) 

Figure 3. Examples of critical areas. 
 

The classification of critical areas as maximum, 
minimum and saddle is done by checking the number 
of non-constrained edges in the boundary and by 
analysing the ascending/descending direction of the 
surface across their boundary. In Figure 4, a bi-torus is 
depicted with its contour levels and the resulting 
critical areas (only the visible ones are highlighted, but 
there are also two symmetrical saddles and a 
minimum). 

 
Figure 4. The constrained mesh and the 
resulting critical areas. 
 
The notion of critical area is sufficient to fully 

describe the topological behaviour of the surface 
around maximum and minimum areas but it is not 
enough for saddle ones. In order to give a better 
characterization of the surface's topology, the notion of 
influence zone is introduced, as the smallest area of the 
mesh having the same topological behaviour as the 
critical area. The influence zone of minimum or 
maximum areas correspond to the critical areas 
themselves, while for saddle ones it is the saddle-like 
portion of the mesh within which the topology of the 
contours changes. Therefore, the influence zone of a 
saddle area is composed by the corresponding critical 



areas and by the part of the mesh contained in the 
contours nearest to the critical area. Note that, saddle 
critical areas at the same elevation may have the same 
influence zone. An example is shown in colour plate 1, 
where the influence zones of saddle areas are depicted 
in yellow. If the influence zone of different saddle 
areas coincide, this indicates that the height function is 
non-simple at that level. 

Based on these concepts, the ERG is defined as a 
graph whose nodes correspond to the influence zones 
of simple critical areas, while macro-nodes are used to 
represent complex critical areas. The ERG arcs 
represent the topological adjacency among critical 
areas and are defined using a region-growing process, 
as described by the following pseudo-code. 

Let N be the set of nodes and A the set of arcs of the 
ERG, then the ERG construction algorithm is: 

 
CharacteriseCriticalAreas();  
N:=DetectInfluenceZones(); 
A:=LinkNodesbyInfluenceZone(N),  
for (each node in N) 
  {for (each non visited growing direction) 
    {while (!(ReachAnotherInfluenceZone)) 
       UpperLevelExpansion(node); 
     ConnectAreas(node, newarea); 
    } 
  } 
 
First of all, the function CharacteriseCriticalAreas() 

computes the critical areas and order them by 
elevation. The function DetectInfluenceZones(N) 
determines the influence zones, which define the set of 
nodes N (see Figure 5(a)). Then, a first set of ERG arcs 
is extracted by expanding the influence zones of simple 
maximum or minimum areas until the boundary of 
another influence zone  is reached. This latter step 
corresponds to the function 
LinkNodesbyInfluenceZone(N, A).  In this manner, the 
arcs connected to terminal nodes of the ERG are 
identified (see Figure 5(b)). To complete the ERG 
construction, the links between saddles and complex 
areas have to be determined. These arcs are determined 
by expanding, if possible, the influence zones 
following the free directions in their outmost boundary 
component (see Figure 5(c)). In other words, all 
directions that do not correspond to an already 
identified arc are checked and the expansion is done in 
the ascending directions (UpperLevelExpansion(node)) 
until another influence zone, i.e. node, is reached. In 

this case, an arc is defined between the starting node 
and the reached one (ConnectAreas(node, newarea)). 
When all the free ascending directions of each node are 
considered, the ERG construction process ends. 

 

                         
 (a)   (b)  (c)    

 
Figure 5. The first step of the ERG 
construction (b) and the final one (c) 
computed for the surface in (a).  
 
Some comments can be made. First of all, since we 

use the height function to map the surface shape, the 
extracted ERG depends on the orientation of the height 
direction. Anyway, the global topology of the shape is 
captured by the ERG and it can be proven that even the 
Morse relationship among critical areas and Euler 
characteristics is still valid, except for meshes 
containing degenerate critical points such as the 
monkey-saddle [5].  The dependence of the ERG from 
the orientation makes it unsuitable for shape 
classification or recognition, which require unique 
models for shape description. Nevertheless, it is 
important to underline that the ERG furnishes a 
topological framework for constructing morphological 
skeletons of a given shape  and it has been shown in 
[19] that the ERG can be effectively used to render the 
topology of a shape at a minimal level of detail. 

Another important point concerns the density of the 
sweeping planes, which determines the scale of the 
shape features that will be. In order to correlate the 
distance of the sweeping planes to the feature size, a 
reasonable criterion is to use the minimum distance 
among vertices in the chosen direction to tune the 
distance of the cutting planes. 

 



4. Re-meshing strategy for constraint 
insertion 

 
The use of the triangulation constrained to contours 

makes it easy to efficiently compute the ERG of the 
mesh. To extend this approach to 3D, it is necessary to 
process the original mesh to ensure that contours are 
properly  inserted and that vertices not belonging to the 
contours are removed from the mesh. 

With regard to the contour extraction, plenty of 
algorithms can be found in the scientific literature, 
mainly designed for GIS applications and generally 
developed for 2.5D meshes [23][24][25]. In our 
context, since the contours have to be inserted as 
constraints, a method has been implemented which 
computes contours and inserts them in the mesh in a 
single step. In a second step, vertices that do not belong 
to the constraints are removed from the mesh. To start 
the process, the only parameter required is the number 
n of parallel planes to be intersected with the mesh T. 
For simplicity, indeed, the contours are always 
considered parallel to the XY plane of the coordinate 
system in which T is represented.  A rotation of the 
whole mesh is performed for computing the slicing in 
any user-defined direction. 

At each level, the intersection of the mesh with the 
corresponding plane is represented by a set of closed 
connected components. To avoid critical intersections, 
in particular with superior and inferior extremes of T, 
the distance among planes may be slightly adjusted 
locally to prevent these to occur. Therefore, inserting 
all the resulting connected components for each level, 
as explained in the following section solves the 
problem. 

 
4.1. Contour computation and insertion 

 
Since the triangulation represents a closed surface, it 

is possible to track and insert each contour level in a 
quite simple way, with basic operations involving only 
the adjacency relations stored in the data structure. 
More precisely, for each plane Πi corresponding to a 
given elevation zi  a list L is defined which contains the 
edges of T that have a non-empty intersection with Πi. 
Note that an edge with one of its vertices on the plane 
is considered to have a non-empty intersection with it. 
The first element of L is chosen as the first seed for 
computing a contour component. Once the tracking of 
this component is complete, the list L is scanned until 
the next seed edge is found, not yet been marked as 

processed. If such an edge exists, then it is used as the 
starting edge to insert a new connected component. The 
described process is repeated until the list L is empty.  

Each connected component is inserted starting from 
the seed and tracing the contour vertex by vertex. 
Vertices may be either vertices of T already on the 
contour, or they have to be created every time there is 
an intersection between an edge and the plane. In this 
case, the mesh is locally updated with the insertion of 
the appropriate number of new triangles and edges, and 
the local adjacency relations are updated as well. From 
this process, a sequence v0, v1, ..., vk of vertices is 
obtained such that an edge of T exists for each pair (vi, 
vi+1), as well as for (vk, v0). 

More precisely, at each step of the contour 
construction an active vertex, v, is defined and the next 
vertex is searched by analyzing the edges in VT(v) 
which is the set of the triangles adjacent to v. Only one 
of these two situations may occur: 

1. There exist one edge e in VT(v) that entirely lies on 
the plane; the next vertex of the contour will be the 
other vertex of e, which becomes  the current  
vertex; edges  incident  in v are marked as visited. 

2. Otherwise, the next edge to be processed is the 
edge e in VT(v), which intersects the plane, it is 
opposite to v and it is not marked as visited. In this 
case e is split at the intersection point p, where a 
new vertex v is created, and the local geometry and 
topology is updated; the new vertex and all its 
incident edges are marked visited (see Figure 6). 

The process starts at the seed edge that is either in 
one of the two situations described above, or it has only 
one vertex on the plane. In this latter case, the 
intersection vertex will be defining the first active 
vertex. 

 
 (a) (b) 



 
 (c) (d) 
 

Figure 6. Inserting a connected 
component onto a tetrahedron. 
 
The process is recursively repeated for each new 

extracted edge until it is impossible to get a next edge. 
The algorithm is described in Figure 6, with a simple 
tetrahedron as starting mesh (a). In the first step, the 
new vertex is inserted at p0 and the next edge selected 
is e1 (b). Also e2 could have been selected as next edge, 
depending on the order with which triangles are stored 
in the VT(v) relation of the new vertex. In this case, the 
contour would be traced in the opposite direction. 
Then, the next new vertex is inserted at p1 and the next 
edge processed is e2 (c). Finally, the last new vertex is 
inserted and the process terminates because all the 
edges of the influence polygon are marked as visited 
(d). 

 
4.2. Vertex removal 

 
Once the contours have been inserted, it is necessary 

to remove two sets of vertices: vertices of the original 
triangulation that do not belong to section planes 
(original vertices), and those generated as a 
consequence of the sequential insertion of contours 
(redundant vertices). Redundant vertices are caused by 
the sequential insertion of contours in the mesh, as 
shown in Figure 7. Here, one triangle of the original 
triangulation is shown with two section planes which 
cross it. The result we would like to obtain is shown in 
the upper sequence (a), while the result of the 
sequential insertion of contours is depicted in (b). 

In general, the problem of removing a vertex v from 
T corresponds to finding a re-triangulation of the 
influence polygon of v, that is, the polygon defined by 
the vertices in the star-neighbourhood of v. The 
removal of redundant vertices is trivial because they 
are all associated to flat influence polygons by 
definition. The vertex removal is therefore handled as 
in a simple 2D case: once the vertex and all its incident 
triangles have been removed, any polygon triangulation 

scheme can be used, provided that an edge is 
maintained on the section plane. 

 

 
Figure 7. The generation of a redundant 
vertex. 

 
The removal of vertices belonging to the original 

triangulation but not lying on the contours requires 
more care because the associated influence polygon 
may be not flat and this could cause self-intersection 
during the re-triangulation phase [22][26].  In this case, 
a support plane is used onto which the polygon is 
projected and triangulated as in the 2D case following 
the approach in [27]. We decided to use the so-called 
average plane of the star-neighbours of v as the 
projection plane, as defined in [27]. The re-
triangulation is then based on the two Euler operators 
MakeEdgeTriangle and MakeTriangle; these insert 
new triangles in the mesh, which should not intersect 
with other elements of the triangulation. In Figure 8, 
three examples are shown in which the vertex v has to 
be removed, and the meshes are represented by 
polygons on the 2D plane. In (a) the polygon can be 
triangulated, while in cases (b) and (c) the polygon 
would self-intersect. 

 
 (a) (b) (c) 
 

Figure 8. Examples of vertices to be 
removed. 
 

v 
v

v 



Therefore, without additional hypotheses, an 
intersection test is necessary between each newly 
created element and the triangulation, to guarantee the 
validity of the model. The implementation of full self-
intersection tests would require a number of operations 
linear in the number of mesh vertices. If n is the total 
number of vertices, the removal of m vertices requires 
O(m*n) operations and, since in our context m is 
almost equivalent  to n, the algorithm with self-
intersection tests would require O(n2) operations. To 
keep the complexity within acceptable limits, we 
decided to implement a partial set of local tests, as 
described in the following. 

First of all, given two triangles t1 and t2  incident at 
the edge e the edge-angle  on e is the angle between the 
normal vectors n1 and n2 respectively of t1 and t2  (see 
Figure 9). This angle is computed for each non-
boundary edge of newly created triangles to evaluate if 
they could intersect or not with existing triangles, 
especially to avoid folding of triangles over 
themselves. 

α=0α>0

n1

n2

n1 n2

 
Figure 9. Example of edge-angles. 

 
If one or more edges of a new triangle is above a 

given threshold value, the existence condition test for 
this new triangle is set to false. The maximum value for 
an edge-angle is π, which indicates that the model is 
surely not valid because the two triangles overlap. 
Therefore, it is possible to determine if the insertion of 
the new triangle causes the mesh to fold over itself, as 
in Figure 8(c), in a number of operations which is 
linear in the number of vertices of the influence 
polygon. As far as the cases of Figure 8(b) are 
concerned, the existence conditions are true even if the 
insertion causes self-intersection. In the context of this 
paper it is important to consider that, if the original 
surface is smooth enough, and if the number of section 
planes is great enough, we cannot find vertices to 
remove that fall in the case of Figure 8(b). However, 
this is only a conjecture suggested by experimental 
results. Future improvements will surely consider the 
definition of a formal framework to a priori establish 
the minimum number of contours to insert in order to 

grant the absence of vertices in such conditions. In the 
remainder we will consider this as an assumption. 

More precisely, let P = [e1, ... ,ek] be the circular list, 
counter-clockwise sorted, of the edges of the influence 
polygon projected onto the support plane. Let us 
indicate with RotateList the move of the last element of 
P in the first position (e.g. the first rotation will result 
in P = [ek, e1, ... , ek-1]). The following pseudo-code 
describes the algorithm used for removing vertices 
from T. 
 
REMOVAL_LOOP { 

IF |P| > 3 { 
Let ea =(v1,v2), eb =(v2,v3) be the first two elements 
of P 

 
IF (ea,eb form a concave angle with respect to the 
interior of P) and IF (not ∃ e ∈ E : e  = (v3, v1) or e 
= (v1, v3)) THEN { 

MakeEdgeTriangle(ec = (v3, v1); t = (ea, eb, 
ec)) 
 
IF the existence conditions of t are not 
verified THEN Undo MakeEdgeTriangle(ec 
,t) and rotate the list ELSE remove ea and eb 
from P and replace them with ec. 
} 

ELSE rotate the list 
 

IF the list P has been rotated |P| times and no 
element has been added GO TO UNREM ELSE GO 
TO REMOVAL_LOOP. 

  } 
 
IF |P| = 3 { 

Let ea, eb, ec be the three edges of P. 
Maketriangle(t= (ea, eb, ec)). 
 
IF the existence conditions of t are not verified GO 
TO UNREM ELSE terminate. 

} 
}END_NEXT 
UNREM  Restore the initial state, the vertex can not 

be removed. 
 

The removability of a vertex depends on the 
geometry of other mesh elements and, unfortunately, 
the sequential removal of vertices may also generate 
unstable configurations like the one in Figure 8(c). Due 
to the sequential removal, vertices, which were 



impossible to remove, may become removable at the 
end of a removal loop. Therefore, the process continues 
with an optimization step and then another removal 
loop. Unstable configurations can be indeed improved 
by edge-swapping. The effect of a generic edge-swap 
operation is depicted in Figure 10, and for 2D 
triangulation, the validity of the model after a swap is 
guaranteed if the four angles of the quadrilateral 
formed by the two triangles (t1 and t2 in the figure) are 
less than 180°. 

 

e

t1

t2

v1

v2

e*

t1

t2

v1

v2

 
Figure 10. Edge swapping. 

 
Unfortunately, the extension to the 3D can be 

applied only if the edge-angle of e is zero, in other 
words, the two triangles lie on the same plane. In all 
other cases, it is necessary to check, again, that the 
swap does not cause intersections among elements of 
the triangulation. A simplified test, based on the 
analysis of edge-angles, has been implemented in this 
case as well: after swapping, the edge-angles of e and 
of those of the quadrilateral edges are computed. If one 
ore more are greater than a fixed threshold value, then 
the initial state is restored. It is not difficult to prove 
that, if applied in two dimensions, this test implies the 
2D case condition, and therefore it can be considered 
as an extension to the three-dimensional case. 

 
(a) 

 
(b) 

Figure 11. The contouring of a complex 
shape. 
 
In Figure 11, an example of re-meshing of a rather 

complex shape is shown. 
 

5. Results and discussion 
 
Based on the described techniques, a prototype 

system has been implemented which performs the 
contour computation and insertion, and the Reeb graph 
extraction. The original mesh can be swept along any 
user-defined direction and with arbitrary number of 
sections. The whole process is depicted in Figure 12 
and in the corresponding colour plate. In (a), the 
original mesh is shown. In (b), the mesh is shown after 
the contouring step, which makes it ready for the shape 
characterisation. The critical areas are depicted in the 
colour plate, with a colouring scheme, which associates 
to minimum areas the blue colour, to maximum the red, 
and to saddle the green one. Also, the influence zones 
are depicted in two different views. 

 

 
(a) 



 
(b) 

Figure 12. The ERG extraction process 
applied to the phone handset (see the 
corresponding colour plate). 

 
The global complexity of the re-meshing algorithm 

can be given as a function of the maximum value 
between the number of vertices of the original 
triangulation, n, and the number of the constrained 
ones, m. Moreover, it can be seen that the number of 
edges and triangles are of the same order as the number 
of vertices. In the slicing step, the edge  ordering pre-
processing requires O(max(m,nlogn)) operations. Then,  
O(nlogn) operations are needed to sort the edges and 
O(max(m,n)) is the number of intersection tests. 
Inserting the whole set of constraints requires O(m) 
edge splits. Finally, the complexity of the vertex 
removal process is O(m), which includes both the 
original vertices and the flat-region ones. 

With regard to the computational complexity of the 
ERG extraction, the recognition of critical areas and 
the detection of influence zones require O(t) 
operations, where t is the number of triangles. The 
complexity of the arc completion step is expressed by 
O(tlogt), so that the total computational cost of the 
ERG extraction is O(mlogm). Therefore, the whole 
process, starting from a generic triangulation, requires 
O(max(mlogm, nlogn)) operations. 

Future developments of this method mainly concern 
the definition of a morphological structure to be 
merged with the ERG, which codes also the main 
morphological changes among contours. With 
reference to Figure 13, the shape of the original surface 
can be restored using contour blending techniques, 
especially if the ERG is augmented with more sections 
along the arcs that identify significant changes of the 
geometry of the contours. In this sense, we are 
currently working on the use of the ERG as the 

reference structure to compress and decompress shape 
models [19].  

 

 
(a) 

 
(b) 

 
Figure 13. The ERG of the teapot: critical 
areas and corresponding influence zones 
(a) and the relations among critical 
sections (b). 
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