

Re-meshing Techniques for Topological Analysis

Marco Attene, Silvia Biasotti, Michela Spagnuolo
Istituto per la Matematica Applicata
Consiglio Nazionale delle Ricerche

{attene, biasotti, spagnuolo}@ima.ge.cnr.it

Abstract

A method for the extraction of the Extended Reeb
Graph (ERG) from a closed 3D triangular mesh is
presented. The ERG codes the relationships among
critical points of the height function associated to the
mesh, and it can represent isolated as well as
degenerate critical points. The extraction process is
based on a re-meshing strategy of the original mesh,
which is forced to follow contour levels. The
occurrence and configuration of flat areas in the re-
triangulated model identify critical areas of the shape,
and their relationships allow the reconstruction of the
global topological structure of the shape.

1. Introduction

The combination of geometry and topology

provides interesting insight into several computer
application problems that involve shape modelling and
understanding. In particular, computational topology
has been proposed to identify a new field of research in
which topological problems are approached taking into
specific consideration the discrete domain and the
computational requirements which characterise digital
applications [1], [2]. Among the different disciplines
related to topology, differential topology deals with the
relations among shape characteristics and properties of
the surface defining the shape. In particular, Morse
theory states that the topology of a given manifold can
be described by analysing the critical points of a
smooth function defined on the manifold itself [3][4].
In other words, global properties and connectivity
information of a shape can be computed provided that

the critical points of a smooth function defined over the
shape are known.

In this context, an interesting topological structure,
known as Reeb graph, codes the surface shape by
storing the evolution of contours obtained by
intersecting the surface with a plane, which sweeps
along a predefined direction. A method for the
extraction of Reeb graphs from triangular meshes
representing bi-variate surfaces (2.5D surfaces), has
been presented in [5][6]. An efficient solution to
automatically compute the Reeb graph of a mesh is to
compute a number of parallel slices in the given
direction, and then study the triangulation of the
contour lines, using the contours as line constraints.
First of all, it can be easily seen that flat areas of the
constrained mesh localize surface critical points. Then,
since vertices of the constrained mesh may only belong
to contours, the topological adjacency of critical points
can be reconstructed using edge-based adjacency
among contours. The method can be applied to a wide
class of surfaces, in particular surfaces whose critical
points are not isolated, a useful advantage when
dealing with real objects.

In this paper, the extension of this approach to
closed 3D meshes is presented. The main difference
consists in the intermediate step of constrained
triangulation. The reconstruction of a constrained
triangulation from the computed contour lines would
require, indeed, knowledge of the shape topology for
solving correspondence and branching problems
[7][8][9], giving rise to a classical "chicken and egg"
problem. Therefore, we have adopted an approach
based on a re-meshing of the original surface, so that
all its vertices will eventually lye on the computed
contour levels. Once the shape is re-meshed, flat
regions can be again used to locate critical points,
using a slightly modified classification scheme as for

the 2.5D case, and their relationships will be easily
tracked using the contour constraints.

The reminder of the paper is organized as follows.
First, the theoretical background of this work is briefly
described with reference to previous work in this area.
Then, the approach for constructing the Reeb graph is
outlined and the re-meshing strategy adopted to extend
the approach to 3D closed meshes is presented. Results
and some discussions on the advantages and limits of
the method conclude the paper.

2. Background

In applications related to geometric modelling, it is

quite natural to choose the height function and its
criticalities to study a given shape. Intuitively, the
height function h of a smooth manifold M, embedded
into the usual three-dimensional Euclidean space, is the
real function which associates to each point on the
surface its elevation, that is, h(P)=h((xP,yP,zP))=zP for
every P∈ M.

The critical points of h, and in general of any real
smooth function defined on M, are the points of M at
which the gradient is zero, i.e. ∇(h(P))=0 or, stated
differently, the tangent plane is horizontal. Moreover, h
is called Morse if all of its critical points are non-
degenerate, that is, if the Hessian matrix H of the
second derivatives of h is non-singular at that point. In
particular non-degenerate critical points are isolated;
therefore, surfaces with plateaux or volcano rims do
not comply with the definition of Morse function.
Figure 1(a) depicts an example of degenerate fourth
order saddle while in (b) an example of non-isolated
critical points is shown.

 (a) (b)

Figure 1. Examples of degenerate critical
points: a quadriped saddle (a) and a line
of maximum points (b).

Critical points of the height function, commonly

known as peaks, pits and passes, are useful for shape
characterization as they are considered among the basic

elements by which shapes are perceived and organised
[10]. The configuration of critical points has been used
for shape description by several authors for different
applications. In [11], for example, the configuration of
critical points is used to code and classify the shape of
a smooth function, while in [12] the configuration of
critical points is used as a constraint for the
simplification of meshes while preserving the topology
of the shape. In [13], a wave traversal algorithm is
proposed to navigate a triangular mesh according to
distance criteria among elements in the simplicial
mesh. A similar wave-front propagation has been used
to deduce the global topology from volume data set in
order to extract correct polygonal meshes representing
iso-surfaces [14].

Starting from the Morse theory, an interesting
topological structure has been defined by Reeb, which
represents a smooth surface by coding the evolution of
its contour levels [15]. More precisely, the Reeb graph
of a manifold M with respect to a real valued function f
is defined as follows:

Definition: Let f : M →ℜ be a real valued function
on a compact manifold M. The Reeb graph of M wrt f
is the quotient space of Mxℜ defined by the
equivalence relation “~”, given by:

(X1, f(X1)) ~ (X2, f(X2)) ⇔ f(X1) = f(X2) and X1 and

X2 are in the same connected component of f -1(f(X1))

h

(a) (b)
Figure 2. The Reeb equivalence classes
on a bi-torus (a) and its graph
representation (b).

In practice all points of a compact manifold having

the same value under a real function and whose pre-

image belongs to the same connected component are
collapsed into one element. Since the contour topology
changes only in correspondence of critical levels of the
height function, the Reeb quotient space can be
described as a graph [3] (see Figure 2).

The use of Reeb graphs has been already addressed
in computer graphics [16], [17], but it has been
generally limited to Morse mapping functions.
Therefore, degenerate critical points are not allowed or
handled by local perturbations of the surface, which
introduces artefacts not corresponding to any shape
features, thus leading to imprecise shape description
[16].

3. Critical areas and graph construction

Given a triangular mesh T representing a single-

sided two-manifold surface without boundary, we want
to compute a topological graph with the same
properties as the Reeb graph. The Extended Reeb
Graph representation (ERG) for 2.5D surfaces
represented by triangular meshes has been fully
described in [5]. The ERG derives from the direct
application of the Reeb graph definition to degenerate
as well as non-simple height functions, which allows us
to consider a broader class of surfaces. The main idea
is to consider critical areas instead of critical points
and identify, starting from them, the smallest area on
the mesh whose behaviour is topologically equivalent
to the critical area (influence zones). Influence zones
are the starting points for identifying the portion of the
mesh contributing to the definition of Reeb graph arcs.

More precisely, a sufficiently dense number of
sections of a triangulated mesh T is computed and the
mesh T* is defined as the triangulation of the contours,
constrained to the contours themselves, i.e. the edges of
T* never cross a contour. In T*, maximum and
minimum points of T are localised by flat regions
whose vertices belong to the same contour [5] [18].
Saddle points are localised either by flat areas having
vertices at the same elevation but belonging to different
contours (see Figure 3(a)), or by regions composed of
two adjacent non-flat triangles such that their common
edge is flat (see Figure 3(b)). These regions of T* are
defined to be the critical areas of T and they may be
simply as well as multiply-connected: in Figure 3(c), an
example of multiply-connected critical area of
maximum is shown.

 (a) (b)

(c)

Figure 3. Examples of critical areas.

The classification of critical areas as maximum,
minimum and saddle is done by checking the number
of non-constrained edges in the boundary and by
analysing the ascending/descending direction of the
surface across their boundary. In Figure 4, a bi-torus is
depicted with its contour levels and the resulting
critical areas (only the visible ones are highlighted, but
there are also two symmetrical saddles and a
minimum).

Figure 4. The constrained mesh and the
resulting critical areas.

The notion of critical area is sufficient to fully

describe the topological behaviour of the surface
around maximum and minimum areas but it is not
enough for saddle ones. In order to give a better
characterization of the surface's topology, the notion of
influence zone is introduced, as the smallest area of the
mesh having the same topological behaviour as the
critical area. The influence zone of minimum or
maximum areas correspond to the critical areas
themselves, while for saddle ones it is the saddle-like
portion of the mesh within which the topology of the
contours changes. Therefore, the influence zone of a
saddle area is composed by the corresponding critical

areas and by the part of the mesh contained in the
contours nearest to the critical area. Note that, saddle
critical areas at the same elevation may have the same
influence zone. An example is shown in colour plate 1,
where the influence zones of saddle areas are depicted
in yellow. If the influence zone of different saddle
areas coincide, this indicates that the height function is
non-simple at that level.

Based on these concepts, the ERG is defined as a
graph whose nodes correspond to the influence zones
of simple critical areas, while macro-nodes are used to
represent complex critical areas. The ERG arcs
represent the topological adjacency among critical
areas and are defined using a region-growing process,
as described by the following pseudo-code.

Let N be the set of nodes and A the set of arcs of the
ERG, then the ERG construction algorithm is:

CharacteriseCriticalAreas();
N:=DetectInfluenceZones();
A:=LinkNodesbyInfluenceZone(N),
for (each node in N)
 {for (each non visited growing direction)
 {while (!(ReachAnotherInfluenceZone))
 UpperLevelExpansion(node);
 ConnectAreas(node, newarea);
 }
 }

First of all, the function CharacteriseCriticalAreas()

computes the critical areas and order them by
elevation. The function DetectInfluenceZones(N)
determines the influence zones, which define the set of
nodes N (see Figure 5(a)). Then, a first set of ERG arcs
is extracted by expanding the influence zones of simple
maximum or minimum areas until the boundary of
another influence zone is reached. This latter step
corresponds to the function
LinkNodesbyInfluenceZone(N, A). In this manner, the
arcs connected to terminal nodes of the ERG are
identified (see Figure 5(b)). To complete the ERG
construction, the links between saddles and complex
areas have to be determined. These arcs are determined
by expanding, if possible, the influence zones
following the free directions in their outmost boundary
component (see Figure 5(c)). In other words, all
directions that do not correspond to an already
identified arc are checked and the expansion is done in
the ascending directions (UpperLevelExpansion(node))
until another influence zone, i.e. node, is reached. In

this case, an arc is defined between the starting node
and the reached one (ConnectAreas(node, newarea)).
When all the free ascending directions of each node are
considered, the ERG construction process ends.

 (a) (b) (c)

Figure 5. The first step of the ERG
construction (b) and the final one (c)
computed for the surface in (a).

Some comments can be made. First of all, since we

use the height function to map the surface shape, the
extracted ERG depends on the orientation of the height
direction. Anyway, the global topology of the shape is
captured by the ERG and it can be proven that even the
Morse relationship among critical areas and Euler
characteristics is still valid, except for meshes
containing degenerate critical points such as the
monkey-saddle [5]. The dependence of the ERG from
the orientation makes it unsuitable for shape
classification or recognition, which require unique
models for shape description. Nevertheless, it is
important to underline that the ERG furnishes a
topological framework for constructing morphological
skeletons of a given shape and it has been shown in
[19] that the ERG can be effectively used to render the
topology of a shape at a minimal level of detail.

Another important point concerns the density of the
sweeping planes, which determines the scale of the
shape features that will be. In order to correlate the
distance of the sweeping planes to the feature size, a
reasonable criterion is to use the minimum distance
among vertices in the chosen direction to tune the
distance of the cutting planes.

4. Re-meshing strategy for constraint
insertion

The use of the triangulation constrained to contours

makes it easy to efficiently compute the ERG of the
mesh. To extend this approach to 3D, it is necessary to
process the original mesh to ensure that contours are
properly inserted and that vertices not belonging to the
contours are removed from the mesh.

With regard to the contour extraction, plenty of
algorithms can be found in the scientific literature,
mainly designed for GIS applications and generally
developed for 2.5D meshes [23][24][25]. In our
context, since the contours have to be inserted as
constraints, a method has been implemented which
computes contours and inserts them in the mesh in a
single step. In a second step, vertices that do not belong
to the constraints are removed from the mesh. To start
the process, the only parameter required is the number
n of parallel planes to be intersected with the mesh T.
For simplicity, indeed, the contours are always
considered parallel to the XY plane of the coordinate
system in which T is represented. A rotation of the
whole mesh is performed for computing the slicing in
any user-defined direction.

At each level, the intersection of the mesh with the
corresponding plane is represented by a set of closed
connected components. To avoid critical intersections,
in particular with superior and inferior extremes of T,
the distance among planes may be slightly adjusted
locally to prevent these to occur. Therefore, inserting
all the resulting connected components for each level,
as explained in the following section solves the
problem.

4.1. Contour computation and insertion

Since the triangulation represents a closed surface, it

is possible to track and insert each contour level in a
quite simple way, with basic operations involving only
the adjacency relations stored in the data structure.
More precisely, for each plane Πi corresponding to a
given elevation zi a list L is defined which contains the
edges of T that have a non-empty intersection with Πi.
Note that an edge with one of its vertices on the plane
is considered to have a non-empty intersection with it.
The first element of L is chosen as the first seed for
computing a contour component. Once the tracking of
this component is complete, the list L is scanned until
the next seed edge is found, not yet been marked as

processed. If such an edge exists, then it is used as the
starting edge to insert a new connected component. The
described process is repeated until the list L is empty.

Each connected component is inserted starting from
the seed and tracing the contour vertex by vertex.
Vertices may be either vertices of T already on the
contour, or they have to be created every time there is
an intersection between an edge and the plane. In this
case, the mesh is locally updated with the insertion of
the appropriate number of new triangles and edges, and
the local adjacency relations are updated as well. From
this process, a sequence v0, v1, ..., vk of vertices is
obtained such that an edge of T exists for each pair (vi,
vi+1), as well as for (vk, v0).

More precisely, at each step of the contour
construction an active vertex, v, is defined and the next
vertex is searched by analyzing the edges in VT(v)
which is the set of the triangles adjacent to v. Only one
of these two situations may occur:

1. There exist one edge e in VT(v) that entirely lies on
the plane; the next vertex of the contour will be the
other vertex of e, which becomes the current
vertex; edges incident in v are marked as visited.

2. Otherwise, the next edge to be processed is the
edge e in VT(v), which intersects the plane, it is
opposite to v and it is not marked as visited. In this
case e is split at the intersection point p, where a
new vertex v is created, and the local geometry and
topology is updated; the new vertex and all its
incident edges are marked visited (see Figure 6).

The process starts at the seed edge that is either in
one of the two situations described above, or it has only
one vertex on the plane. In this latter case, the
intersection vertex will be defining the first active
vertex.

 (a) (b)

 (c) (d)

Figure 6. Inserting a connected
component onto a tetrahedron.

The process is recursively repeated for each new

extracted edge until it is impossible to get a next edge.
The algorithm is described in Figure 6, with a simple
tetrahedron as starting mesh (a). In the first step, the
new vertex is inserted at p0 and the next edge selected
is e1 (b). Also e2 could have been selected as next edge,
depending on the order with which triangles are stored
in the VT(v) relation of the new vertex. In this case, the
contour would be traced in the opposite direction.
Then, the next new vertex is inserted at p1 and the next
edge processed is e2 (c). Finally, the last new vertex is
inserted and the process terminates because all the
edges of the influence polygon are marked as visited
(d).

4.2. Vertex removal

Once the contours have been inserted, it is necessary

to remove two sets of vertices: vertices of the original
triangulation that do not belong to section planes
(original vertices), and those generated as a
consequence of the sequential insertion of contours
(redundant vertices). Redundant vertices are caused by
the sequential insertion of contours in the mesh, as
shown in Figure 7. Here, one triangle of the original
triangulation is shown with two section planes which
cross it. The result we would like to obtain is shown in
the upper sequence (a), while the result of the
sequential insertion of contours is depicted in (b).

In general, the problem of removing a vertex v from
T corresponds to finding a re-triangulation of the
influence polygon of v, that is, the polygon defined by
the vertices in the star-neighbourhood of v. The
removal of redundant vertices is trivial because they
are all associated to flat influence polygons by
definition. The vertex removal is therefore handled as
in a simple 2D case: once the vertex and all its incident
triangles have been removed, any polygon triangulation

scheme can be used, provided that an edge is
maintained on the section plane.

Figure 7. The generation of a redundant
vertex.

The removal of vertices belonging to the original

triangulation but not lying on the contours requires
more care because the associated influence polygon
may be not flat and this could cause self-intersection
during the re-triangulation phase [22][26]. In this case,
a support plane is used onto which the polygon is
projected and triangulated as in the 2D case following
the approach in [27]. We decided to use the so-called
average plane of the star-neighbours of v as the
projection plane, as defined in [27]. The re-
triangulation is then based on the two Euler operators
MakeEdgeTriangle and MakeTriangle; these insert
new triangles in the mesh, which should not intersect
with other elements of the triangulation. In Figure 8,
three examples are shown in which the vertex v has to
be removed, and the meshes are represented by
polygons on the 2D plane. In (a) the polygon can be
triangulated, while in cases (b) and (c) the polygon
would self-intersect.

 (a) (b) (c)

Figure 8. Examples of vertices to be
removed.

v
v

v

Therefore, without additional hypotheses, an
intersection test is necessary between each newly
created element and the triangulation, to guarantee the
validity of the model. The implementation of full self-
intersection tests would require a number of operations
linear in the number of mesh vertices. If n is the total
number of vertices, the removal of m vertices requires
O(m*n) operations and, since in our context m is
almost equivalent to n, the algorithm with self-
intersection tests would require O(n2) operations. To
keep the complexity within acceptable limits, we
decided to implement a partial set of local tests, as
described in the following.

First of all, given two triangles t1 and t2 incident at
the edge e the edge-angle on e is the angle between the
normal vectors n1 and n2 respectively of t1 and t2 (see
Figure 9). This angle is computed for each non-
boundary edge of newly created triangles to evaluate if
they could intersect or not with existing triangles,
especially to avoid folding of triangles over
themselves.

α=0α>0

n1

n2

n1 n2

Figure 9. Example of edge-angles.

If one or more edges of a new triangle is above a

given threshold value, the existence condition test for
this new triangle is set to false. The maximum value for
an edge-angle is π, which indicates that the model is
surely not valid because the two triangles overlap.
Therefore, it is possible to determine if the insertion of
the new triangle causes the mesh to fold over itself, as
in Figure 8(c), in a number of operations which is
linear in the number of vertices of the influence
polygon. As far as the cases of Figure 8(b) are
concerned, the existence conditions are true even if the
insertion causes self-intersection. In the context of this
paper it is important to consider that, if the original
surface is smooth enough, and if the number of section
planes is great enough, we cannot find vertices to
remove that fall in the case of Figure 8(b). However,
this is only a conjecture suggested by experimental
results. Future improvements will surely consider the
definition of a formal framework to a priori establish
the minimum number of contours to insert in order to

grant the absence of vertices in such conditions. In the
remainder we will consider this as an assumption.

More precisely, let P = [e1, ... ,ek] be the circular list,
counter-clockwise sorted, of the edges of the influence
polygon projected onto the support plane. Let us
indicate with RotateList the move of the last element of
P in the first position (e.g. the first rotation will result
in P = [ek, e1, ... , ek-1]). The following pseudo-code
describes the algorithm used for removing vertices
from T.

REMOVAL_LOOP {

IF |P| > 3 {
Let ea =(v1,v2), eb =(v2,v3) be the first two elements
of P

IF (ea,eb form a concave angle with respect to the
interior of P) and IF (not ∃ e ∈ E : e = (v3, v1) or e
= (v1, v3)) THEN {

MakeEdgeTriangle(ec = (v3, v1); t = (ea, eb,
ec))

IF the existence conditions of t are not
verified THEN Undo MakeEdgeTriangle(ec
,t) and rotate the list ELSE remove ea and eb
from P and replace them with ec.
}

ELSE rotate the list

IF the list P has been rotated |P| times and no
element has been added GO TO UNREM ELSE GO
TO REMOVAL_LOOP.

 }

IF |P| = 3 {

Let ea, eb, ec be the three edges of P.
Maketriangle(t= (ea, eb, ec)).

IF the existence conditions of t are not verified GO
TO UNREM ELSE terminate.

}
}END_NEXT
UNREM Restore the initial state, the vertex can not

be removed.

The removability of a vertex depends on the
geometry of other mesh elements and, unfortunately,
the sequential removal of vertices may also generate
unstable configurations like the one in Figure 8(c). Due
to the sequential removal, vertices, which were

impossible to remove, may become removable at the
end of a removal loop. Therefore, the process continues
with an optimization step and then another removal
loop. Unstable configurations can be indeed improved
by edge-swapping. The effect of a generic edge-swap
operation is depicted in Figure 10, and for 2D
triangulation, the validity of the model after a swap is
guaranteed if the four angles of the quadrilateral
formed by the two triangles (t1 and t2 in the figure) are
less than 180°.

e

t1

t2

v1

v2

e*

t1

t2

v1

v2

Figure 10. Edge swapping.

Unfortunately, the extension to the 3D can be

applied only if the edge-angle of e is zero, in other
words, the two triangles lie on the same plane. In all
other cases, it is necessary to check, again, that the
swap does not cause intersections among elements of
the triangulation. A simplified test, based on the
analysis of edge-angles, has been implemented in this
case as well: after swapping, the edge-angles of e and
of those of the quadrilateral edges are computed. If one
ore more are greater than a fixed threshold value, then
the initial state is restored. It is not difficult to prove
that, if applied in two dimensions, this test implies the
2D case condition, and therefore it can be considered
as an extension to the three-dimensional case.

(a)

(b)

Figure 11. The contouring of a complex
shape.

In Figure 11, an example of re-meshing of a rather

complex shape is shown.

5. Results and discussion

Based on the described techniques, a prototype

system has been implemented which performs the
contour computation and insertion, and the Reeb graph
extraction. The original mesh can be swept along any
user-defined direction and with arbitrary number of
sections. The whole process is depicted in Figure 12
and in the corresponding colour plate. In (a), the
original mesh is shown. In (b), the mesh is shown after
the contouring step, which makes it ready for the shape
characterisation. The critical areas are depicted in the
colour plate, with a colouring scheme, which associates
to minimum areas the blue colour, to maximum the red,
and to saddle the green one. Also, the influence zones
are depicted in two different views.

(a)

(b)

Figure 12. The ERG extraction process
applied to the phone handset (see the
corresponding colour plate).

The global complexity of the re-meshing algorithm

can be given as a function of the maximum value
between the number of vertices of the original
triangulation, n, and the number of the constrained
ones, m. Moreover, it can be seen that the number of
edges and triangles are of the same order as the number
of vertices. In the slicing step, the edge ordering pre-
processing requires O(max(m,nlogn)) operations. Then,
O(nlogn) operations are needed to sort the edges and
O(max(m,n)) is the number of intersection tests.
Inserting the whole set of constraints requires O(m)
edge splits. Finally, the complexity of the vertex
removal process is O(m), which includes both the
original vertices and the flat-region ones.

With regard to the computational complexity of the
ERG extraction, the recognition of critical areas and
the detection of influence zones require O(t)
operations, where t is the number of triangles. The
complexity of the arc completion step is expressed by
O(tlogt), so that the total computational cost of the
ERG extraction is O(mlogm). Therefore, the whole
process, starting from a generic triangulation, requires
O(max(mlogm, nlogn)) operations.

Future developments of this method mainly concern
the definition of a morphological structure to be
merged with the ERG, which codes also the main
morphological changes among contours. With
reference to Figure 13, the shape of the original surface
can be restored using contour blending techniques,
especially if the ERG is augmented with more sections
along the arcs that identify significant changes of the
geometry of the contours. In this sense, we are
currently working on the use of the ERG as the

reference structure to compress and decompress shape
models [19].

(a)

(b)

Figure 13. The ERG of the teapot: critical
areas and corresponding influence zones
(a) and the relations among critical
sections (b).

6. Acknowledgements

The authors would like to thank all the people of the

Computer Graphics Group at IMA-CNR, and the
reviewers for their helpful comments.

7. References

[1] T. K. Dey, H. Edelsbrunner, and S. Guha,
“Computational Topology”, In Advances in Discrete
and Computational Geometry, eds: Chazelle, B.,
Goodman, J. E., Pollack, R., Contemporary
Mathematics 223, AMS, Providence, 1999, pp. 109-
143.

[2] J.C.Hart, “Computational Topology for Shape
Modelling”, In Proceedings of Shape Modelling
International ’99, Univ. Aizu, Japan, 1999.

[3] J. Milnor, Morse Theory, Princeton University Press,
New Jersey, 1963.

[4] V.Guillemin, and A.Pollack, A, Differential Topology,
Englewood Cliffs, NJ: Prentice-Hall, 1974.

[5] S. Biasotti, B. Falcidieno, and M. Spagnuolo,
“Extended Reeb Graphs for Surface Understanding and
Description” to appear in Proceedings of 9th Discrete
Geometry for Computer Imagery conference, LCNS,
Springer Verlag, Uppsala, 2000.

[6] S. Biasotti, B. Falcidieno, and M. Spagnuolo, “Shape
Abstraction Using Computational Topology
Techniques”, in Proceedings of the Seventh Workshop
GEO-7 organized by the IFIP Working Group 5.2,
Parma, October 2000.

[7] H. Fuchs, Z. M. Kedem, and S.P. Uselton, "Optimal
surface reconstruction from planar contours2.
Communications of the ACM, 20(10):693-702, October
1977.

[8] Meyers D. "Reconstruction of surfaces from planar
contours" Ph.D Dissertation, University of
Washington, 1991.

[9] J.-M. Oliva, M. Perrin, S. Coquillart. "3D
reconstruction of complex polyhedral shapes from
contours using a semplified generalised Voronoi
diagram", Proc. of Eurographics 96, J. Rossignac and
F. Sillion (eds), Blackwell publishers, Vol. 15 (1996)
N°3.

[10] P. Pentland, “Perceptual organization and
representation of natural form”, Artificial Intelligence,
Vol.28, 1986, pp. 293-331.

[11] L.R.Nackman, “Two-dimensional Critical Point
Configuration Graphs”, IEEE Transactions on Pattern
Analysis and Machine Intelligence, Vol. PAMI-6, No.
4, 1984, p. 442-450.

[12] C. Bajaj, D. R. Schikore, "Topology preserving data
simplification with error bounds", Computer &
Graphics, 22(1), 1998, pp. 3-12.

[13] U. Axen, and H. Edelsbrunner, “Auditory Morse
Analysis of Triangulated Manifolds”, Mathematical
Visualization, Springer Verlag, 1998, pp. 223-236.

[14] Z. J. Wood, M. Desbrun, P. Schröder, D. Breen,
"Semi-Regular Mesh Extraction from Volumes", in
IEEE Visualization Conference, Salt Lake City,
October 2000.

[15] G. Reeb, “Sur les points singuliers d'une forme de Pfaff
completement integrable ou d'une fonction
numèrique”, Comptes Rendus Acad. Sciences, Paris,
1946, 222:847-849.

[16] Y. Shinagawa, and T. L. Kunii, “Constructing a Reeb
graph automatically from cross sections”, IEEE
Computer Graphics and Applications, 11(6), 1991, pp
44-51.

[17] Y. Shinagawa, T. L. Kunii, and Y. L. Kergosien,
“Surface Coding Based on Morse Theory”, IEEE
Computer Graphics & Applications, 1991, pp 66-78.

[18] G. Aumann, H. Ebner, and L. Tang, “Automatic
derivation of skeleton lines from digitized contours”,
ISPRS Journal of Photogrammetry and Remote
Sensing, 46, 1991, pp. 259-268.

[19] S. Biasotti, M. Mortara, and M. Spagnuolo, “Surface
Compression and Reconstruction using Reeb graphs
and Shape Analysis”, Spring Conference on Computer
Graphics, Bratislava, 2000, pp. 174-185.

[20] R. Engelking, and K. Sielucki, Topology: a geometric
approach, Sigma series in Pure Mathematics, Volume
4, Heldermann Verlag, Berlin, 1992.

[21] T. Banchoff, "Critical points and curvature for
embedded polyedral surfaces", American Mathematical
Monthly, 77:475-485, 1970.

[22] P. Cignoni, C. Montani, R. Scopigno “A Comparison
of Mesh Simplification Algorithms”, Computer &
Graphics, 22(1):37-54, 1998

[23] C.L. Bajaj, V. Pascucci, D.R. Schikore, “Fast
isocontouring for improved interactivity”, in
Proceedings 1996 SPIE Symposium on Volume
Visualization, San Francisco, 1996, pp.39-46.

[24] Y. Livnat, H.W. Shen, C.R. Johnson, “A Near optimal
isosurface extraction algorithm using the span space”,
in IEEE Transactions on Visualization and Computer
Graphics, 2, 1996, pp.73-84.

[25] M. Van Kreveld, “On Quality paths on polyhedral
terrains”, in Proceedings IGIS’94: Geographic
Information Systems, Nievergelt, J., Roos, T., Schack,
H.J., Widmayer, P. (Eds.), Lecture Notes in Computer
Science, 884, Springer-Verlag, 1994, pp.113-122.

[26] Alan D. Kalvin, Russell H. Taylor, “Superfaces:
Polygonal Mesh Simplification with Bounded Error”,
in IEEE Computer Graphics and Applications, vol 16,
no. 3, 1996.

[27] W. J. Schroeder, J. A. Zarge, W. E. Lorensen ,
“Decimation of Triangle Meshes”, in Computer
Graphics (SIGGRAPH ’92 proceedings), vol. 26, no. 2,
1992.

[28] G. Turk “Re-Tiling Polygonal Surfaces”, in Computer
Graphics (SIGGRAPH ’92 proceedings), vol. 25, 1992.

[29] G. Barequet, M. Dickerson, D. Eppstein, “On
triangulating three-dimensional polygons”, in
Computational Geometry, 10 (1998) pp. 155-170.

