(will be inserted by the editor)

International Journal of Computer Vision manuscript No.

Thesaurus-based 3D Object Retrieval

with Part-in-Whole Matching

Alfredo Ferreira -
Manuel J. Fonseca -
Joaquim A. Jorge -

Michela Spagnuolo
Bianca Falcidieno

Received: date / Accepted: date

Abstract Research in content-based 3D retrieval has
already started, and several approaches have been pro-
posed which use in different manner a similarity as-
sessment to match the shape of the query against the
shape of the objects in the database. However, the suc-
cess of these solutions are far from the success obtained
by their textual counterparts.

A major drawback of most existing 3D retrieval so-
lutions is their inability to support partial queries, that
is, a query which does not need to be formulated by
specifying a whole query shape, but just a part of it, for
example a detail of its overall shape, just like documents
are retrieved by specifying words and not whole texts.
Recently, researchers have focused their investigation
on 3D retrieval which is solved by partial shape match-
ing. However, at the extent of our knowledge, there is
still no 3D search engine that provides an indexing of
the 3D models based on all the interesting subparts of
the models.

In this paper we present a novel approach to 3D
shape retrieval that uses a collection-aware shape de-
composition combined with a shape thesaurus and in-
verted indexes to describe and retrieve 3D models using
part-in-whole matching. The proposed method clusters
similar segments obtained trough a multilevel decom-
position of models, constructing from such partition the
shape thesaurus. Then, to retrieve a model containing a
sub-part similar to a given query, instead of looking on

Alfredo Ferreira - Manuel J. Fonseca - Joaquim A. Jorge
Department of Computer Science and Engineering
INESC-ID/IST/Technical University of Lisbon

E-mail: {alfredo.ferreira, mjf, jaj}@inesc-id.pt

Simone Marini - Michela Spagnuolo - Bianca Falcidieno
Instituto di Matematica Applicata e Tecnologie Informatiche
Consiglio Nazionale delle Ricerche

E-mail: {simone, michi, bianca}@ge.imati.cnr.it

Simone Marini - Marco Attene

a large set of subparts or executing partial matching be-
tween the query and all models in the collection, we just
perform a fast global matching between the query and
the few entries in the thesaurus. With this technique
we overcame the time complexity problems associated
with partial queries in large collections.

Keywords 3D Shape Retrieval - Part-in-whole
Matching - Thesaurus - Segmentation

1 Introduction

The growing number of three-dimensional objects stored
in digital libraries makes searching and browsing these
collections a non-trivial task, since a regular domain-
specific database can contain thousands of items. In-
deed, unless effective meta-data have been assigned to
the models in the collection, it is not easy to find the
sought model. Aware of this, during the last decade,
researchers proposed several approaches to retrieve 3D
models based on shape similarity. Some of these content-
based retrieval systems are able to find a model in a
database from a sketched query, a set of keywords or
using query-by-example. However, results produced by
such systems are far from the successful query results
obtained by their textual counterparts.

A major handicap of most existing retrieval sys-
tems is the fact that they only support queries of the
complete object and do not allow partial queries to
be formulated, which greatly hinders their usefulness.
We can illustrate this problem with a parallel between
3D and text retrieval. Existing 3D search engines work
mostly by comparing the complete models: the query
is a complete 3D object and the items against which it
is matched are also complete objects. In a text-based

system, this would mean to require that detailed specifi-
cations of pages, or even complete documents, are used
as query initiators instead of typing a few words to a
search engine to find the results sought. This might ex-
plain why 3D model retrieval systems enjoy limited use-
fulness and there is no equivalent of a Google™ search
engine for three-dimensional geometric shapes.

Recently, a few 3D shape retrieval approaches with
partial matching capabilities have been proposed. These
approaches allow searching for a model by supplying as
a query only a part of the desired model. However, a
few of these solutions rely on representing only a few
sub-parts of the model and not the complete model [1-
3]. Indeed, considering a small set of sampled or even
distinctive features of an object to classify it proved to
be an efficient short-cut, but some eventually relevant
object information is discarded in this process.

To overcome this problem, our research focused on a
novel approach to 3D shape retrieval with part-in-whole
matching, as proposed by Suzuki et al.[4,5]. We aim for
a solution similar to the one adopted by existing text
retrieval systems, which classifies all words from the
entire document and not only a small set of selected
keywords. In these systems the submitted queries usu-
ally contain just a couple of terms [6] and documents
containing such words are retrieved. Likewise, our ap-
proach will retrieve models from a collection based on
geometrical similarity between a query shape and parts
of the models in that collection.

Basically, we intend to accomplish the reverse of the

modelling by example method proposed by Funkhouser et

al. [7]. In their work, existing objects in a database were
used to model a new object, which will be composed by
subparts of other models in the database. Indeed, au-
thors claim that most objects can be assembled by in-
terchanging parts with others when a sufficiently large
database is considered. Following this rationale, in this
work we assume that models in a collection share com-
mon parts and propose using these common parts in a
similar manner text information retrieval system use to
words in documents.

To classify and retrieve large collections of docu-
ments, successful text retrieval systems rely on word
thesauri [8]. Likewise, we believe that through the use
of an effective shape decomposition mechanism and a
shape thesaurus with inverted indexes we will be able
to describe and retrieve 3D models through whole-to-
part searches. Indeed, use of thesauri in shape retrieval
is not a recent idea [9] but it is still adopted by recent
search engines. Indeed, while the basic concepts of the
thesaurus remain unchanged, recent investigation focus,
for instance, on improving thesaurus construction [10,
11].

Similarly to word thesaurus in text retrieval, which
contains the list of words that compose the vocabulary
used in the documents, the proposed shape thesaurus
will contain the shapes that compose the indexed mod-
els. Conceptually, the shape thesaurus should consist
of a list of segments extracted from the models in the
collection and the inverted index consists on a list of
terms in the thesaurus with the corresponding lists of
occurrences in the indexed models. This approach will
allow us to take advantage of some well known tech-
niques from text information retrieval, such as the term
frequency and inverse document frequency to rank the
relevance of every subpart in the database.

However, despite the success of word thesauri in text
documents [12], while words are explicit in text, subpart
identification in a three-dimensional object is not trivial
and the success of our approach depends greatly on the
quality of this identification. Therefore, the core of our
research focus is on devising techniques for model seg-
mentation suitable to be used in as a basis for building
a shape thesaurus.

Moreover, the number of words in a lexicon is usu-
ally measured in millions [13] but, to ensure time ef-
ficiency, our shape thesaurus should have just around
a few thousand terms. Thus, instead of using all seg-
ments extracted from the models, we must group them
according to their geometric properties and use these
groups to construct the thesaurus. Indeed, something
similar occurs in text indexing when different forms of
the same word correspond to a unique term. Therefore,
we investigated techniques for clustering the shapes re-
sulting from the models decomposition in order to cre-
ate a shape thesaurus for a given collection.

Indexing of three-dimensional shapes using a the-
saurus was a challenge we faced during our research, es-
pecially due to the novelty of our ideas. However, since
our approach is based on the same fundament used in
traditional textual information retrieval, we transposed
concepts and techniques from this data to our field of
work, i.e. 3D shapes. Thus, instead of a lexicon holding
words from documents in the collection, we devised a
lexicon where terms are the prototype for each cluster
produced by the partitioning of the set of shapes is-
sued by collection decomposition. Additionally, we im-
plemented an inverted index to store the mapping be-
tween the terms and the corresponding models in the
collection.

Based on the indexing methodology we adopted,
the retrieval process is relatively straightforward. Es-
sentially, we combine techniques inspired by textual in-
formation retrieval and 3D shape matching ones. From
this combination we attained a solution that provides

efficient retrieval from large collections of models using
partial queries.

In the remain of this paper we will present an overview

of our methodology to construct shape thesauri for 3D
model collections, and then describe the concepts and
methods behind it. Next we will present the indexing
and retrieval techniques we developed to support the
partial queries on collections of models. Finally we will
present a few conclusions and suggest some steps for
future research.

2 Related Work

During recent years, several 3D shape search engines
have been introduced. One of the earliest of such sys-
tems was proposed by Paquet and Rioux in 1997. Ne-
fertiti [14] is the first well documented query by con-
tent software for three-dimensional model databases. It
incorporates a set of retrieval algorithms that allows
database searches by scale, shape, color or any combi-
nation of these parameters.

Later, in 2001, Thomas Funkhouser and his team re-
leased the Princeton 3D model search engine [15]. This
system is now the best known solution for shape re-
trieval, indexing more that thirty six thousand 3D mod-
els. Its authors even claim that they have developed the
search engine to be the ” Google™ for 3D models” [16],
although this might be considered an overstatement.

Unlike the Princeton team, whose search engines
aims on generic 3D models, the PRECISE group at Pur-
due University developed a search engine for a specific
domain [17]. The 3D Engineering Shape Search system
integrates a set of existing shape description techniques
to compute the feature vectors of a model. This search
engine incorporates a 3D interface that allows users to
submit a shape as a query, to select the feature vectors
that will be used for shape representation and to search
the database by browsing.

Starting from the idea that, if two 3D models are
similar they also look similar from all viewing angles,
Chen et al. introduced a retrieval system [18] based on
the light field descriptor. The 3D Model Retrieval Sys-
tem from National Taiwan University is available on the
web and its database contains more than ten thousand
publicly available 3D generic models. A simple inter-
face is integrated in this search engine, allowing users
to retrieve 3D models by drawing 2D silhouettes.

Vrani¢ deployed a web-based retrieval system for 3D
models [19], to serve as a proof-of-concept to methods
and tools for content-based search for 3D-mesh models
proposed during his PhD research. The Content-based
Classification of 3D-models by Capturing spatial Char-
acteristics (CCCC) 3D search engine uses a set of model

databases, including the Princeton Shape Benchmark
test and training databases, providing around three thou-
sand classified objects.

Based on two distinct approaches to description and
matching of 3D objects, Assfalg et al. developed a content-
based retrieval system for 3D shapes [20]. Using a cur-
vature map of the shape surface, the authors propose,
to subdivide the map into a grid of rectangular tiles
and then use these to compute a shape histogram. In
another approach, the map is segmented into regions of
homogeneous curvature, and regions are described with
weighted walkthroughs. This search engine allows users
to perform queries-by-example through a web interface
on a database of three-dimensional models.

More recently, in 2007, researchers from the FOX-
MIIRE group released a on-line search engine for 3D
content [21]. Their search engine implements the adap-
tive views clustering technique, proposed by the au-
thors to index 3D models based on two-dimensional
views. Besides the good retrieval results, this method
has a unique feature when compared with previous ap-
proaches: this search engine is the first that accepts
3D models retrieval from photos [22] and that can be
reached through a mobile device. Indeed, the idea of in-
corporating a 3D model retrieval system in a mobile de-
vice was proposed by Suzuki et al. [23]. They developed
an experimental 3D shape retrieval system for cellular
phones where users can search for a model similar to a
given example.

Additionally, Qin Lv et al. introduced a toolkit that
supports the construction of content-based similarity
search systems [24]. The Ferret toolkit is a content-
based similarity search engine for generic, multi-feature
object representations. It was designed to solve the sim-
ilarity search problem in high-dimensional spaces. In-
deed, this solution can be used to successfully con-
struct content-based similarity search systems for au-
dio recordings, digital images, 3D shape models and
genomic microarry data.

Knowing that the list of works on shape retrieval
presented above is not exhaustive, one can state that
there is plentiful work on 3D shape retrieval. However,
most of the methods for 3D object comparison dis-
cussed in the literature approach the problem of shape
similarity as a global matching problem. These methods
estimate the similarity between two objects by return-
ing as output a real number obtained by analysing the
overall shape of the two objects instead of considering
similar sub-parts shared by the two objects [25].

In the last decade several approaches to partial match-
ing have been proposed, but none of them provide a
definitive solution to this problem. The methodologies
for the estimation of partial matching can be grouped

into two coarse categories: based on local shape descrip-
tors and based on structural descriptors.

In the first category, one of the most important
method that inspired many other approaches, uses the
spin-images to provide a set of local shape descrip-
tors [1]. This method samples the object surface into a
set of oriented points (3D points with surface normals)
and associates to each sampled point a 2D description
of the surface around it: the spin-image. A similarity
measure between 2D images is used to evaluate the sim-
ilarity between two spin-images and thus between two
oriented points of the compared objects. In this way
a point-to-point correspondence between the two ob-
jects is provided. In [26] the similarity measure defined
among spin-images is used to group oriented points into
patches. This latter approach allows the correspondence
between patches instead of points.

A more recent approach [2] performs partial match-
ing by comparing the salient features of two objects.
This method first defines a set of local descriptors on
the surface of the object. Each local descriptor, asso-
ciated to a surface point of the object, consists of a
quadric patch providing an approximation of the sur-
face around the point. After the local descriptors have
been computed, the method identifies the salient fea-
ture describing the shape of the object by grouping the
local descriptors according to curvature variance and
intensity. Finally each salient features is associated to
an indexing vector and inserted in to a geometric hash
table. These indices are used to access parts of objects
through the hash table.

Also in [3] important regions of the surface object
are used to perform partial matching. A region of an
object is considered important if it is useful to discrim-
inate the object with respect to other objects of a given
data-set. Distinctive regions are identified by randomly
sampling the points on the object surface and by as-
sociating a shape descriptor to each sampled point. As
descriptor, the authors propose the harmonics shape
descriptor [27] computed at four different scales. Each
descriptor is compared with all the others descriptors
at the same scale in a data-set of objects grouped into
object classes and the distinctiveness of each point is
obtained from the discounted cumulative gain of the
ranked list obtained from the comparison by measur-
ing how often objects of the same class appear near the
front of the list.

The previous methods describe 3D objects as a set
of local shape descriptors, on the contrary structural de-
scriptors describes 3D objects as a graph-like skeleton
representing the relevant part of the object and their
adjacency relationships. While local shape descriptors
drop out the information on the overall shape, the struc-

tural descriptor provide at the same time global and
partial information on the shape of the object. Beside
the identification of shared similar sub-parts, between
two objects, and their correspondence, the information
associated to the structural descriptor makes easier the
estimation of the global similarity based on the overall
shape of the objects. The following are some example of
partial matching methods based on structural descrip-
tors.

The methods proposed in [28] represent the shape
object as binary tree obtained by recursively subdivid-
ing the object into two parts. The recursive subdivision
of the objects is obtained by analyzing the geodetic dis-
tance among the vertexes of the triangular mesh repre-
senting the object and the angle among triangles. The
similarity measure between two objects is obtained by
matching the two trees, Beside the sub-part correspon-
dence is induced by the node mapping provided by the
matching algorithm.

The structural-based framework for 3D shape match-
ing proposed in [29] uses a many-to-many matching
algorithm that works with skeletal representations of
3D volumetric objects. The matching between two 3D
skeletons is obtained by using an extension of the Earth
Mover’s Distance (EMD) where skeleton transforma-
tions are considered.

The approach proposed in [30] it is based on a flexi-
ble matching framework based on the consolidated Reeb
graph theory. This theory allows the use of different
functions to analyze the shape, each one able to iden-
tify different relevant sub-parts of the object, finally
geometric attributes are considered to drive the match-
ing algorithm. In this case the structural descriptor is
coded as attributed and directed graph and the match-
ing is achieved through the construction of a common
sub-graph (possibly not connected) between the two in-
put graphs, that highlights where two shapes are similar
or dissimilar.

Another recent method based on Reeb graphs has
been proposed in [31]. This approach uses the Reeb
graph to decompose the shape model into regions (Reeb
charts) whose topology corresponds to a disk or an an-
nulus. A shape signature, based on a parametrization
technique, is extracted from each chart and a graph
is generated by joining adjacent regions of the model.
Shape comparison between models is obtained through
a graph matching algorithm that reduce the computa-
tional complexity by matching nodes whose correspond-
ing regions have the same topology, that is disks or an-
nulus.

Suzuki et al. proposed [4,5] a solution that follows a
different approach. They aim for part-in-whole match-
ing instead of partial matching. To that end, the 3D

model is initially decomposed into its sub-components
and then shape descriptors for these shapes are com-
puted using a rotation invariant shape descriptors they
proposed earlier for their similarity retrieval system [32].
To segment the shape, Suzuki et al. apply a simple
and automatic decomposition technique. They decom-
pose 3D models into several parts by comparing an-
gles created by normal vectors of each polygonal face,
and the technique finds sharp angles and cuts polyg-
onal faces into parts based on a typical clustering ap-
proach. Although their decomposition technique is fully
automatic, authors acknowledge that occasionally the
algorithm can not efficiently handle highly complex 3D
models. Additionally, time complexity is also a prob-
lem of the proposed method, since the decomposition
process is a time consuming task and shape match-
ing requires a considerable amount of time due to the
high number of shape descriptors for each model. In our
approach, described in following section we propose a
novel methodology that, while also relying on shape de-
composition, overcome the retrieval time complexity.

3 Approach Overview

Our research path aims at transposing to 3D retrieval
the matching and indexing approaches widely-used in
text information retrieval. We propose using a shape
thesaurus for model classification and indexing, sim-
ilarly to what happens in text documents. Unfortu-
nately, while words can be easily extracted from docu-
ments, subpart identification in a 3D object is an harder
task, unless the object representation already contains
such information.

One example of such exception is when models in
the collection are represented by primitive instancing.
In this particular case, the shapes used to construct the
object are explicit in the model, which greatly simpli-
fies the subpart identification. However, such represen-
tation is not commonly used on the myriad of exist-
ing domain-specific and generic collections that rely on
several distinct forms of model representation [33]. Nev-
ertheless, these different representations can always be
converted or approximated to a more generic one, such
as a polygonal mesh. Aiming for a representation inde-
pendent approach, in the present work we assume that
a 3D model is represented as a non-manifold polygonal
mesh.

Thus, a crucial task of our technique consists on
identifying object decomposition from its 3D mesh. The
difficulties of this task came not only from its com-
putational complexity but also from the ambiguity of
such decomposition and the requirement of an auto-
matic segmentation of entire collections.

Moreover, to be useful for our approach, the seg-
ments obtained through model decomposition must then
be meaningfully clustered. The terms in the thesaurus
will spring up from these clusters and will be associ-
ated to all models containing the segments in the cor-
responding cluster. Each term will be represented by a
prototype, to be used for matching with the query when
looking for a model in the collection. Therefore, com-
puting shape clusters and corresponding prototypes is
another issue that we tackled in our research.

Summarising, our approach to 3D shape retrieval
with part-in-whole matching faces three major chal-
lenges, besides the ones shared with the global match-
ing approaches.The first challenge is to devise an ef-
fective and efficient decomposition of models into sub-
parts. The second is to attain a meaningful clustering
of these segments and corresponding cluster represen-
tation. The third is to find an effective way to index
the extracted information that allows fast and accurate
search.

The system is divided into two distinct parts: the
classification component and the retrieval component.
While the first indexes the collection, the second per-
forms queries in the indexed collection. Indeed, this is
valid for almost any information retrieval system. A
schematic overview of our system is depicted in Fig-
ure 1, illustrating the two parts of the system and cor-
responding components.

The classification part is composed by three individ-
ual components. The Decomposer processes the model
collection, decomposing its models into segments that
are stored in a so-called Shape Pool. The algorithm be-
hind the Decomposer is described in Section 4.These
segments are analysed by Segment Clustering compo-
nent in order to compute a partition for the Shape Pool.
The proposed methodology to cluster the Shape Pool is
described in Section 5.1. Finally, this partition is used
by the Thesaurus Builder to create the shape thesaurus
and corresponding inverted index, as described in Sec-
tion 5.2.

On the other hand, the retrieval part of our 3D
shape retrieval system consists on a single component,
the Shape Retriever. This component receives as input
the 3D shape to be used as an example-query and re-
trieves from the indexed collection the corresponding
query results, which is a list of models that are partially
similar to the query. In Section 5.3 we explain our re-
trieval technique which allows fast model retrieval with
part-in-whole matching.

Shape
Pool
Model |::> Decomposer
Collection

Eﬁ

)

Segment Clustering [ﬁ

uolealjisse|D

Indexed Collection
(Thesaurus & Inverted Index)

Retrieval

Query

Fig. 1 Schematic overview of our approach.

4 Collection-Aware Segmentation

To segment models in the collection, we need a tech-
nique that provides not only automatic segmentation
of all models, but also produces segments useful for
the thesaurus construction. Several approaches to 3D
shape decomposition have been published, with recog-
nised success in some domain-specific models, such as
articulated characters. However, independently of the
methodology used, all these approaches only consider
the model that should be decomposed, ignoring the
context where it lies, namely the other models in the
same collection. Inspired by a similar principle, in the
present work we devised a novel approach to shape de-
composition: the collection-aware shape segmentation,
a method that takes into account the other objects in
the collection while decomposing each model.

The collection-aware segmentation (CAS) is a de-
composition algorithm that performs multilevel shape
segmentation of each model based on the concept of
decomposable regions. Decomposable regions are de-
termined according to their distinctiveness regarding
regions of all other models in the collection. A concep-
tual overview of this methodology, depicted in Figure 2,
can be given as follows: each model in the collection
is decomposed into subparts; then, shape descriptors
for each subpart are computed and used to determine

Shape Retriever |:“> e J'

Results

For each segment in the shape pool

Decompose into
subparts
(using HFP)

Decomposable

Compute subpart

subpart signatures

identification

(SHA)

3D Model Collection
Shape Pool

Estimate subpart
distinctiveness
(acording to collection)

Fig. 2 Collection-Aware Segmentation pipeline

the subpart distinctiveness; next, based on this infor-
mation, the algorithm identifies which subparts of each
model should be further decomposed and the iteration
starts over, considering now the recently decomposed
subparts.

We emphasise that the proposed segmentation al-
gorithm does aim to produce decomposed versions of
models in a collection. Instead its goal is to hierarchi-
cally extract segments from models in such a manner
that uncommon segments are further segmented, while
segments geometrically similar to many others are not.

This way we obtain a multilevel segmentation contain-
ing both distinctive and common subparts of models.
Such result provide an adequate starting point for con-
structing the shape thesaurus.

From the description, above it should be clear that
the proposed approach is supposed to work with generic
collections of 3D models, and also supports different
shape segmentation and description techniques. to val-
idate our framework, we selected a well-defined setup
and focused on a specific decomposition technique that
facilitates the creation of a thesaurus for 3D shape re-
trieval. Therefore, three major constraints were defined:

— Collection type:
CAD models;
— Segmentation algorithm:
Hierarchical fitting primitives [34];
— Shape description:
Rotation invariant spherical harmonics [35].

For our experiments we selected collections of CAD
models instead of generic collections. For an easier com-
prehension of the algorithm we use, in this document
as explanatory example, a very small set of models
from the engineering shape benchmark collection (ESB)
introduced in [36]. The examples are shown in Fig-
ure 3. When choosing which existing segmentation al-
gorithm would have been the most appropriate to con-
duct our tests, we considered that (1) our experiments
are focused on tessellated CAD models and (2) a multi-
level/hierarchical segmentation is necessary in our frame-
work. These two requisites led us to the choice of the
hierarchical fitting primitives (HFP) segmentation algo-
rithm, which indeed proved to behave particularly well
on CAD models and is intrinsically hierarchical [37,38].

To create the feature vectors we use the spherical
harmonics (SHA), a widely accepted rotation invariant

F&<¢
A’ Y

Fig. 3 Example collection with six models extracted from Pur-
due’s Engineering Shape Benchmark [36].

shape descriptor published by the Princeton team [35].
Nevertheless, we plan to add more shape descriptors in
future research, combining them in order to improve
the accuracy of our similarity measurements.

4.1 Hierarchically Segmented Meshes

From the constraints referred above we developed the
collection-aware algorithm based on hierarchical fitting
primitives (CAS/HFP). The HFP is a traditional mesh
segmentation algorithm that produces, for a given model
represented as a triangle mesh, an iteratively generated
binary tree of clusters each of which is fitted by one
of the predefined fitting primitives [34]. On a brief de-
scription, the HFP algorithm works as follows: initially
each triangle of the mesh represents a single cluster; at
each iteration, all pairs of adjacent clusters are consid-
ered; and the pair that can be better approximated with
one of the fitting primitives forms a new single cluster,
which represents a parent node at the above level in the
tree. This iteration repeats until there is only one clus-
ter remaining, representing the whole model, and which
will become the tree root. The resulting tree is called
the hierarchically segmented mesh (HSM) and contains
the whole multilevel decomposition of the segmented
mesh.

In order to allow a fast iterative decomposition of
models in the collection, the CAS/HFP algorithm takes
advantage of the fact that HSM trees contain the whole
multilevel segmentation. This way each model just need
to be segmented once using HFP algorithm, and the
resulting trees are then used to iteratively decompose
all models in the collection. Indeed, as illustrated in
Figure 4, the CAS/HFP algorithm is divided into two
completely distinct stages (initialization and iteration)
and the estimation of HSM trees, i.e. running the HFP
algorithm, happens once for each model at the initial-
ization stage. These trees are stored in the HSM set,
constructed during the initialization.

4.2 Shape Pool

In the initialization stage, besides the HSM trees, also
shape signatures are computed for all models in the
collection, as the one depicted in Figure 5, along with
the respective model. These signatures are stored in a
structure, which we called Shape Pool, together with the
corresponding segments - at this stage, the whole mod-
els. Moreover, during the iteration stage, data stored
in the Shape Pool are used to identify decomposable
segments. Then, the segments resulting from such de-
composition and corresponding signatures are added to

INITIALIZATION

For each model in the collection

-

HSM Set

R

N T
>

ITERATION

For each step

/%
4

Fig. 4 CAS/HFP block decomposition

Fig. 5 3D model and corresponding signature.

the Shape Pool. Therefore, the Shape Pool is a dynamic
structure that will store the most important informa-
tion produced by the algorithm: the pairs segment-sig-
nature that will be later used to construct the shape
thesaurus.

Indeed, the Shape Pool is a highly important part of
the proposed approach, not only because it keeps the fi-
nal result of the segmentation algorithm but mainly be-
cause the efficiency of the CAS/HFP algorithm depends
greatly on it. This happens because the determination
of the segments to decompose is a key step, executed
at every iteration for each segment in the Shape Pool.

Basically, the Shape Pool contains a set of pairs seg-
ment-signature. In practice, the segment in the pool
is not really a mesh or a shape. Instead, it is just a
reference to a node in the HSM tree. On the other hand,
the signature is the feature vector produced by the SHA
descriptor. Conceptually, the Shape Pool can be seen as
a multidimensional dataset, where each point in space
corresponds to a segment.

Decompose into

Compute HSM % Subsegments %
Identify Compute
Load Model Compute Signature Decomposable Subsegments
Segments Signatures
\A
Add Segment to Pool Add Subsegments
to Shape Pool
44444 \ C = 3 S
A
Model __> Shape (
Collection Pool
v

4.3 Identification of Decomposable Segments

At the beginning of the iteration, the decomposable seg-
ments in the Shape Pooll must be identified in order to
be further decomposed if necessary. This is indeed the
major challenge of the proposed algorithm. It is not
trivial to automatically identify which segments should
be further decomposed. For this purpose, we suggest to
use the shape signatures of each segment, to measure
the Euclidean distance between them, and then count,
for every segment, the number of segments within a
given range, defined by the so-called similarity thresh-
old. If this count is below a given value, the so-called
similar count threshold, the segment should be further
decomposed, since there are not enough similar shapes
in the pool to flag it as a recurrent shape part in the
given collection. In an extreme situation, all models
share a common shape: the triangle. However, the idea
behind this approach is to decompose models into a
meaningful and not trivial set of shapes, since decom-
posing a model to the triangle level is quite useless for
our approach.

Considering the Shape Pool as a multidimensional
dataset, we do not need to measure the distance be-
tween all segments to flag a segment as decomposable
, which would be a time consuming task. This can be
done by using a k-nearest neighbor (k-NN) search al-
gorithm, setting the k£ value to the given similar seg-
ment count threshold. Then, for each segment in the
Shape Pooll we just need to apply the k-NN algorithm
and check if all returned items are within the similar-
ity threshold. An alternative way to achieve the same is
using within-distance or a-cut search algorithm which
will identify all segments within a given distance, which

should be set to the similarity threshold value and check
if the number of returned segments is above the similar
segments count.

The simplest approach to k-NN determination is the
linear search, also referred as the naive approach, which
is similar to our initial suggestion since it basically mea-
sures all distances and keep the closest segments. This
method has a linear running. However, different ap-
proaches were suggested for the k-NN search problem
with better time complexities, such as the ones based on
spatial-partitioning methods. A quite simple and com-
monly used example is the kd-tree [39], which allows
k-NN searches in sub-linear time of O(log N), where N
is the cardinality of the Shape Pool.

Despite of its poor time-complexity, linear regard-
ing Shape Pool size, we are using a naive approach
since other methods require additional complex data
structures, which will increase the CAS/HFP algorithm
memory requirements and at this point of our research
we are mainly concerned in validate the proposed ap-
proach with collections containing hundreds models. In
the future, to adapt the algorithm to larger collections,
more efficient k-NN search methods can be used.

Nevertheless, to improve the behavior of our linear
search and considering we do not really need to know
the nearest neighbors but only if there are enough simi-
lar segments, we slightly changed the algorithm. Instead
of searching for the k£ nearest neighbors or determine the
number of segments within a given range, our version
just tries to find out if there are k segments within a
given threshold. We call it the k-within range (k-WR)
estimation. Although theoretically it still runs in linear
time, in practice it is much faster since it needs to mea-
sure much less distances. Moreover, we are aware that
with some changes we can further improve the execu-
tion time without using any additional complex struc-
tures or, using such structures, achieve a sub-linear time
complexity.

Summarizing, to determine if a segment is decom-
posable we apply a search algorithm in the signature
space, using as parameters two values: the similarity
threshold, which sets when two shapes are considered
similar, and the similar count threshold, which defines
how many segments should be similar in order to be
considered not distinctive. Indeed, these are the two
parameters used to tune our decomposition algorithm.

4.4 Sub-segments

After identifying the segments that should be decom-
posed we must determine their decomposition. To that
end, we use the HSM trees created during the initial-
ization stage and stored in the HSM set. Since these

trees contain the whole multilevel segmentation of the
model, it is fast and simple to determine the decompo-
sition of a segment. This is done simply by looking at
the corresponding node in the tree and using the child
nodes as sub-segments. Moreover, since every segment
keeps a reference to the matching node, this task is ac-
complished in constant time.

For every newly created sub-segment a signature is
computed. For that purpose the sub-segment is treated
as an independent shape and the corresponding SHA
descriptor is computed. The resulting signature is then
attached to the sub-segment, as well as the reference
to the corresponding node in the HSM tree. Then, all
this information is added to the Shape Pool. When all
segments identified as decomposable have been decom-
posed and the originated sub-segments added to the
Shape Pool, the iteration starts over by identifying again
the decomposable segments. This cycle continues unless
one of the stop conditions has been verified. Basically,
there are two conditions that may stop the cycle: when
a pre-defined iteration count is achieved (a parameter
of the CAS/HFP algorithm) or if there are no more
decomposable segments. At the end of the algorithm
one has a Shape Pool containing all segments of every
model in the collection, such as the pool depicted in
Figure 6. This Shape Pool is then used to create the
shape thesaurus.

5 Thesaurus Construction and Shape Retrieval

Although the core of our research has focused on the
collection segmentation, the remaining of the classifi-
cation process, namely the thesaurus construction and
the retrieval process have an important role in our ap-
proach to shape retrieval with part-in-whole matching.
Thus, in the next sections we will describe these meth-
ods, starting by the essential Shape Pool clustering.

5.1 Shape Pool Clustering

Due to its utility in a wide variety of fields, a large num-
ber of clustering algorithms are available, based on sev-
eral distinct approaches. Nevertheless, the fundamental
goal of any of these algorithms is to partition unlabelled
data into groups in an unsupervised manner ! . Depend-
ing on the approach, these groups, also called clusters,

1 Usually, when referring to supervised partition of data the
more generic ”classification” term is used. Indeed, data classifi-
cation can be defined as the process of grouping these data into a
set of groups or categories, independent of the method applied for
that purpose. Note that under this definition, data can be clas-
sified even manually by humans [40]. While in supervised clas-
sification data labels and corresponding mapping functions are

10

FOLSr PV
8 ¥ 24 Kol A,

eV ee \ ~
A abaltalel B

Fig. 6 Shape Pool resulting from the decomposition of example collection presented above.

\Z"r;

~ N &
o o

§!9

Fig. 7 Seven clusters partition produced from the Shape Pool depicted above.

can be found according to a predefined number of ex-
pected groups or according to a given data similarity
threshold within each group, among other less common
approaches.

In any case, dataset clustering is a NP-complete
problem and optimal solutions can only be found in
exponential time. Thus, existing practical clustering so-
lutions rely on sub-optimal algorithms, such as the it-
erative methods to determine a partition for a dataset.

used, in unsupervised classification - clustering - no labeled data
are available.

Among the iterative methods the k-means clustering is
by far the most popular partitioning methodology [41],
with a vast family of algorithms.

In order to provide a tight control on the size of the
lexicon that will be created from the Shape Pool parti-
tion we choose to adopt a partitioning approach based
on a predefined number of expected clusters. Therefore,
in our approach we used a k-means clustering algorithm
based on a combination of local search and Lloyd’s algo-
rithm [42] proposed by Kanungo et al. [43]. As a result
of applying this algorithm to the Shape Pool we ob-

11

tain a set of clusters grouping similar shape segments
together, as depicted in Figure 7.

The number of clusters in the partition is directly
related with the size of the thesaurus. Indeed, it cor-
responds to the number of terms in the thesaurus, as
explained ahead. Thus, the definition of a suitable clus-
ter count is determined by the desired size of the Shape
Thesaurus. It should be large enough to allow a good
representation of geometrical features and small enough
to allow fast searches in the thesaurus terms.

5.2 Thesaurus Creation

After having the segments in the Shape Pool grouped
according to its geometrical similarity we are able to
create the shape thesaurus. Indeed, the shape thesaurus
we devised is based on the well known thesaurus con-
cept used in text information retrieval. According to
Baeza-Yates and Ribeiro Neto [44] a thesaurus is a data
structure composed of a pre-compiled list of important
words in a given domain of knowledge and, for each
word in this list, a list of related (synonym) words. In
our approach, a 3D shape thesaurus is a pre-compiled
list of terms that represent groups of similar shapes ex-
tracted from models in a given collection and, for each
group in this list, a list of shapes that comprises it.

Starting from the partition computed based on the
Shape Pool, we create the 3D shape thesaurus by con-
sidering each cluster as a term, T;, constructing a list
of segments that comprises each cluster and attribut-
ing a signature to each term. The term corresponds to
the prototype for the grouped segments and the signa-
ture of a term is the centre of the corresponding cluster
of signatures. An example of a shape thesaurus, con-
structed from the partition referred in previous section,
is depicted in Figure 8.

In this example a thesaurus with seven terms was
constructed from the partition with seven cluster de-
picted in Figure 7. To each term is assigned a list con-
taining the segments in the corresponding cluster. Addi-
tionally, to each term is attributed a multidimensional
signature based on the SHA signatures of the shapes
in the cluster. As referred above, this signature corre-
sponds to the centre of the cluster that originated the
respective term.

After creating the shape thesaurus, and following
the concepts used in text information retrieval, we pro-
duce the inverted file that will support the retrieval
process. The inverted file is simply an index composed
of a vocabulary of terms and a list of occurrences of
each particular term in models from the indexed collec-
tion. In practice, the inverted index necessary for 3D

shape retrieval does not differ from its counterpart in
text retrieval. The 3D shape inverted file contains a
list of the terms in the thesaurus and, for each one, a
list of models that contain segments in the correspond-
ing segment list, i.e. in the corresponding Shape Pool
partition cluster. In Figure 9 we illustrate an example
of the inverted index relative to the example collection,
constructed based on the thesaurus depicted previously.

In the depicted example the terms in the thesaurus
are indexed according to the decomposition and cluster-
ing results. To that end, for each term in the thesaurus,
we swept the corresponding segment list and identified
the models to which every segment belongs and created
with them a list of models assign to the respective term
T; in the inverted index.

5.3 Shape Retrieval

With the collection properly indexed it is now possible
to execute partial queries. The retrieval process con-
sists on a three-stage pipeline that receives as query
a 3D shape and produces a list of models that sat-
isfy the given query, as depicted in Figure 10. The first
step consists of extracting the geometric features of the
query shape by computing its signature. To that end
we use the same shape descriptor used to calculate seg-
ment signatures, the rotation invariant spherical har-
monics (SHA).

As a result of feature extraction, we obtain the sig-
nature of the query shape. In order to retrieve models
partially similar to the query, the nearest neighbors of
this signature in the signature space of the shape the-
saurus must be found. To that end a k-NN search is
performed on the shape thesaurus. In the current im-
plementation of our solution a linear search algorithm
is used, but to improve the retrieval efficiency a faster
sub-linear approach can be used. Independent of the
algorithm efficiency, any k-NN search will return the
terms more similar to the query shape.

From the list of thesaurus terms produced by the k-
NN algorithm is quite straightforward to find the mod-
els that partially satisfy the query. Using the inverted
index, the models assigned to the resulting terms are
gathered and ordered, thus producing a list of partially
similar models. In the present implementation this pro-
cess executes in linear time since it consists on a single
swap through the inverted index terms. Nevertheless,
this process can be executed constant time if structures
that map directly the terms in the thesaurus with the
entries in inverted index were used. This option was not
followed because our main concern was to guarantee as
independence among all components in order to facil-
itate changes on the algorithms. Moreover, as part of

12

e -
Ty

~¥Y
<

4

<%
<Y

Bk

Ts

\

&

A
q
/\

ML

P

?Ts
e

|

ad-o |Y|}

@S

Fig. 9 Example of an inverted index created for the example collection based on the corresponding thesaurus.

future research, we plan to perform partial matching
between the query and each model in the inverted list
to improve the results.

Considering that the signature computation depends
only of the complexity of the submitted query, the simi-
lar term search in the thesaurus runs on linear (or even-
tually sub-linear) time, O(NN), where N is the thesaurus
size, and identifying models using the inverted index
can be accomplished in linear (or constant) time, O(K)
or O(1), it should be clear to the reader that the re-
trieval time efficiency does not depend directly on the
size of the collection, but rather on the size of the the-
saurus. Thus, the retrieval process execution time de-
pends on query complexity and thesaurus size.

6 Experimental Results

As referred previously, the core of our approach is the
identification of terms for the thesaurus. To identify
these terms we must decompose all models in the collec-
tion, which is the most important part of the thesaurus
construction process. We suggested using a collection-
aware segmentation (CAS) method to compute such de-
composition. More precisely, we developed a CAS algo-
rithm based on the hierarchical fitting primitives (HPF')
segmentation method.

Thus, one of our initial concerns, after implementing
the proposed decomposition algorithm, was to compare
the results produced by our method with the results
produced by the HFP algorithm. Indeed, HFP is the
basis of our algorithm, so it is important to check if

13

FEATURE EXTRACTION RETRIEVAL

Signature Computation Similar Term Searching
(SHA) (KNN on thesaurus)

1 =

Model Identification
(Through Inverted Index)

Indexed Collection

(Thesaurus & Inverted Index)

—

T
o/P

Query

Retrieved Models

Fig. 10 Shape retrieval pipeline.

any improvement were achieved. To that end we used
the small collection referred above to study the behav-
ior of both algorithms. After asserting CAS/HFP effec-
tiveness, we addressed the scalability problem. First, by
simulating algorithm behavior with a worst case situa-
tion. Next, by evaluating the CAS algorithm with a 3D
model benchmark collection. In the following sections
we describe this work and discuss the obtained results.

6.1 Comparing CAS/HFP with HFP

We used our prototype to compute the segmentation
with the collection-aware decomposition based on hi-
erarchical fitting primitives. To compute the segmen-
tation with the HFP algorithm we used the EfpiSoft
tool [45], an application that implements the hierarchi-
cal fitting primitives segmentation algorithm and pro-
vides. To run the HFP algorithm within EfpiSoft a sin-
gle parameter must be specified: the number of desired
segments. However, in order to allow easier compari-
son of results we prefer to obtain a pre-determined tree
depth. This issue was solved by defining the number of
segments according to that tree level, which is simple
since the hierarchical segmentation produces a binary
tree.

Comparing the two trees, it is easy to conclude that
the segmentation produced by CAS/HFP algorithm is
more concise than the one produced by using only HFP.
But more important than this is the fact that in our ap-
proach all leaf segments have similar granularity, while
in the HFP tree some leaf segments are just planar
patches and others are still complex parts. This leads
to the unbalanced models decomposition that occurs
when trying to stop HFP segmentation based on a pre-
defined value instead of setting it manually during de-
composition, as allowed by EfpiSoft. Instead, using the
CAS/HFP algorithm the tree leafs have similar com-

plexity, providing a balanced model decomposition, where
all simpler segments are at the same complexity level.

Based on these results we concluded that, for our
needs of automatic decomposition of models, our method
produces better results than the original hierarchical fit-
ting primitives algorithm. However it needs larger com-
putation times per model. Still, we underline that our
aim is constructing a thesaurus for shapes, a task that is
supposed to run off-line, without user intervention. So,
it is acceptable that the proposed CAS/HFP algorithm
takes some time to process a collection.

6.2 Mesh complexity in ESB models

While studying the behavior of proposed CAS/HFP al-
gorithm we needed to have some information about the
mesh complexity of models in the engineering shape
benchmark (ESB) collection [36]. Although the number
of faces in a polygonal mesh might not be proportional
to model complexity, we considered for our purposes
that complex objects contain more polygons than sim-
pler ones and face count is easy and fast to estimate,
providing a good approximation to object complexity.

From this estimation, we concluded that a vast ma-
jority of models has more than one thousand faces and,
within these objects, most of them have less than ten
thousand faces, as illustrated in Figure 12. Addition-
ally, the complexity histogram depicted in Figure 13
reinforces these conclusions.It is there clear that most
models contain between one and six thousand faces,
with a peak around the one thousand polygons count.

| <,
/\
9 ©
4] \& &
N N PN PN
d] I € | & &
AN VAN /N / N\

AN N\ SNCUN
11301 [\ Ve®| ~® @

/ﬂ\ N e @
. T~

Fig. 11 Decomposition trees produced by HFP (top) and
CAS/HFP (bottom)

14

5,3% 5,9%

Oless than 100
mfrom 100 to 1K

@ from 1K to 10K
= from 10K to 100K

56,6%

Fig. 12 Distribution of mesh complexity in ESB collection, ac-
cording to polygon count per model.

Models

0 3 6 9 12 15 18 21
Faces (thousands)

Fig. 13 Mesh complexity histogram for ESB collection.

This data allow us to say that, regarding time and space
complexity analysis of our algorithm, we can safely con-
sider that models to be processed contain a few thou-
sand polygons each. Such conclusion is relevant because
the execution time of HFP segmentation, performed
at the initialization stage time of the CAS/HFP algo-
rithm, depends on the number of polygons in the mesh
as well as the size of the resulting HSM tree.

6.3 Worst case simulation

Due to the high-dimensionality of the SHA signature,
the number of segments in the Shape Pool might turn
into an issue. Therefore, we simulated the proposed de-
composition algorithm behaviour in a worst case situa-
tion. We considered that all elements of the collection
have much more than two thousand polygons and there
are no similarities between the first three hundred seg-
ments extracted from each model during segmentation
by HFP algorithm. Although the first assumption is
perfectly acceptable, as shown in previous section, the

whole scenario is highly improbable in a model collec-
tions unless is used an extremely low value for the sim-
tlarity threshold, i.e. to be considered similar two seg-
ments should be basically equal, or an illogically high
value for the similar count threshold, i.e. to be consid-
ered not decomposable a segment should be similar to
all the other segments in the collection. Nevertheless,
we simulated such unreal condition.

Since in our approach we are using the ESB, we
set up our simulation according to this collection cardi-
nality. Thus we simulated two scenarios, one with the
approximate size of the smaller clusterof the ESB and
other with the approximate size of the whole ESB col-
lection. Therefore, we considered two hypothetical col-
lections with one hundred and eight hundred 3D models
respectively and simulate the algorithm behavior.

The results obtained in these simulations were not
surprising. As expected, the number of segments in the
Shape Pool grew exponentially, as illustrated in Fig-
ure 14. Naturally, the memory required to store seg-
ment information grows similarly. Computing the rota-
tion invariant spherical harmonics descriptor according
to authors suggestion, its signature is represented by
a feature vector with dimension d = 544. This means
that each signature requires slightly more than 2KB
of memory. As explained previously, besides the signa-
ture there are other information to be stored, such as
the reference to the originating model and reference to
the corresponding node in the HSM tree. In practice
each pair segment-signature uses approximately 4KB
of memory. From our simulation we observed that, at
seventh iteration, more than eight hundred megabytes
of memory are necessary just to store segment informa-
tion.

Another problem identified during this simulation is
the time required to determine if a segment should be
further decomposed. Indeed, the decomposability iden-
tification is based on a neighbor search and sub-linear
algorithms for this purpose are widely-known. However,
as described in Section 4.3, in present implementation

250

/ =100 models
100 /
i _/

Init. #1 #2 #3 #4 #5 #6 #7

——800 models

Segments (Thousands)

Iteration

Fig. 14 Shape Pool growth in worst case simulations.

15

200 SRR

180 | 204000 segments ——==f —
= 160
E 140 /
g 120 //
§ 100 /
£ 80
g 60 /
[SIT, [S LR J

0| S040segments oo,
0
Init. #1 # #3 #a #5 #6 #7
Iteration

Fig. 15 Decomposability determination for a single segment in
eight hundred models collection.

of the CAS/HFP algorithm we used an adapted ver-
sion of the k-NN linear search, called k-within range
(k-WR). This version outperforms k-NN, allowing de-
composability identification of a segment in reasonable
time, but runs also in linear time wrt Shape Pool size.
Thus, if the size of the Shape Pool grows exponentially
we will face unacceptable computation times. For in-
stance, in the seventh iteration of CAS/HFP at the
worst case simulation the Shape Pool has more than
two hundred thousand segments. Determining at this
point the decomposability of a single segment takes
less than one second, but considering that this oper-
ation should be repeated for all segments, it might take
more than fifty hours to determine which of these are
decomposable, as illustrated in Figure 15. Even if this
processing time might eventually seem acceptable for
batch processing, it will take too much time to analyze
an exponentially larger Shape Pool.

We are aware that the time complexity issue identi-
fied above should be addressed in a near future in order
to make our approach scalable to very large collections
of 3D models. Indeed, we are already investigating some
techniques to avoid the exponential growth of the Shape
Pool, along with more efficient algorithms for decom-
posability determination. However, even for the worst
case simulations, the results we obtained are acceptable
for testing the proposed approach with the Shape Pool
size below fifty thousand segments. Therefore, we still
use the k-WR algorithm in the remaining of our tests
of the CAS/HFP algorithm.

6.4 Decomposing a benchmark collection

As expected, when applying the CAS/HFP algorithm
with reasonable parameters to a benchmark collection,
the results are quite different from the suggested by the
worst case simulation. We used as a test collection, the
clustered version of the engineering shape benchmark

3500
3000 /
2500
2000 /
1500 /
1000

500 /

Init #1 #2 #3 #4 #5 #6 #7

——Shape Pool size

Segments

Decomposable segments

Iteration

Fig. 16 Shape Pool growth for the RCP cluster of the ESB col-
lection

from SHREC 2008. This collection contains three clus-
ters, described below:

— Flat-Thin Components (FTC):
105 models whose envelope is largely a solid of rev-
olution;

— Rectangular Cubic Prism (RCP):
273 parts with a largely rectangular or cubic prism
envelope;

— Solid of Revolution (SoR):
475 objects with thin-walled sections and shell-like
components;

— Complete ESB collection:
853 models, i.e. all of the above.

We evaluated the algorithm with each one of the
presented clusters separately. Its behavior was very en-
couraging, since in all tested cases the Shape Pool growth
was far below the obtained in the worst case simula-
tions. More important, the growth rate of the Shape
Pooll starts decreasing around third iteration, which
means that the Shape Pool does not increase to imprac-
tical size. For instance, when processing the RCP clus-
ter with the proposed CAS/HFP we noticed that the
number of segments in the Shape Pool stabilize below
the four thousand elements, as depicted in Figure 16.
Indeed, we observed similar behavior in all other tests
performed until now, which is by itself a very positive
result.

Considering this behavior and the results obtained
in the worst case simulations, we concluded that the
proposed algorithm will be able to produce valid results
in suitable time and consuming a reasonable amount of
memory. Analysing the simulations of decomposability
determination process, as the one which is depicted in
Figure 15, we see that for more than fifty thousand seg-
ments it took less than twenty seconds to determine if
a segment is decomposable, while the Shape Pool size
does not even reach one tenth of that. Moreover, from
these simulations we saw that for a Shape Pool contain-

16

ing more than five thousand segments it will took less
than fifteen seconds to determine the decomposability
of all these segments. Even if we consider a larger Shape
Pool with around fifty thousand segments, the time
necessary to perform one iteration of the CAS/HFP
algorithm in this circumstances is less than four hours.
Since this algorithm is supposed to be batch processed,
we think that such computation times are perfectly ac-
ceptable.

Furthermore, the memory requirements are also within

reasonable range. Indeed, in the proposed approach, a
single signature is assigned to each segment in the Shape
Pool and thus it is trivial to conclude that the memory
required to store the signature space is directly pro-
portional to the size of the Shape Pool. As explained
in Section 4, the CAS/HFP algorithm relies on the
rotation invariant spherical harmonics introduced by
Michael Kazhdan et al. [35] to numerically describe the
three-dimensional shapes stored in the Shape Pool. The
corresponding feature vector needs slightly more than
2KB of memory and is used as a signature for the shape.
Since additional information is necessary for a segment,
besides its signature, each item in the Shape Pool re-
quires 4KB. This means that for a Shape Pool contain-
ing fifty thousand segments our technique will require
around two hundred megabytes of memory to store it.
Although this Shape Pool size is far above the expected
when processing the benchmark collections, the amount
of required memory is quite acceptable.

The CAS/HFP algorithm is divided into two stages.
The initialization stage, where the HSM trees for all
models in the collection are computed and correspond-
ing root segments are added to the shape pool, and the
iteration stage, where the decomposability of segments
in the shape pool is determined and those that are iden-
tified as decomposable are segmented, while the shape
pool is updated accordingly.

We studied the time spent both in the initializa-
tion stage and in every iteration of the iteration stage.
The chart depicted in Figure 17 illustrates the mea-
sured execution times when processing the complete
ESB collection. As expected, the observed execution
times mimic the behavior of the shape pool growth.
After the third iteration the iteration time starts de-
creasing and achieves a very low value after a few iter-
ations.

To understand which part of the decomposition pro-
cess are consuming more time, we measured the time
spent by each task separately. Regardless of the stage in
the CAS/HFP algorithm, we identified three main tasks
executed during decomposition. The HSM estimation
task consists on computing the HSM tree for a model.
The signature computation task comprises the deter-

3000

2500 ~\

—. 2000
7
8

1500
@

1000

Time (s

500

Init. #1 # #3 #4 # # #7 # #9 #10

Iteration

Fig. 17 Detailed execution time of CAS/HFP algorithm when
processing the complete ESB collection.

W HSM Estimation = Signature Computation ™ Similarity Estimation

= I 1
L

RCP

FCT

0 2 4 6 8 10 12 14 16

Time (thousand seconds)

Fig. 18 Time spent by each stage of CAS/HFP algorithm.

mination of the feature vector to represent a shape.
Finally, the similarity estimation task consists on de-
termining how many segments are similar to a given
segment.

From the measured times we observed that, as de-
picted in Figure 18, most of the processing time is spent
computing the shape signatures. Indeed, in preliminary
tests we noticed that, even for simple shapes, the es-
timation of the SHA signature took between one and
two seconds. Thus it was expected that when the shape
pool grows, computing all the signatures turns into a
time consuming task. However, the SHA shape descrip-
tor offers great descriptive power and we prefer to take
advantage of it at the cost of execution time.

Nevertheless, to process larger collections another
descriptor should be considered. We suggest a simpler
descriptor, with a smaller signature and with shorter
computation time. Such shape descriptor will most cer-
tainly provide less descriptive power that the SHA de-
scriptor. On the other hand, using it will entail less
memory for shape pool storage and shorter execution
times.

6.5 Building a Shape Thesaurus

The ultimate goal of our research was to devise a method-
ology to index a collection of 3D models in such a way
that is possible to retrieve objects using partial queries.
To that end we proposed the use of a shape thesaurus
with the corresponding inverted index. To study the
construction of such structures we tested our approach

17

with the ESB collection. Using the methodology de-
scribed in this document, we classified the set of 853 en-
gineering models that compose the ESB 2decomposing
its models, computing the terms to represent the ex-
tracted segments and creating a shape thesaurus with
this terms along with the corresponding inverted index.

Considering that the first step (decomposition of
models in the collection) has finished, the creation of a
shape thesaurus from the resulting shape pool requires
two additional steps. The second step corresponds to
the determination of a partition for the shape pool, while
the third step consists on the construction of the shape
thesaurus from that partition. The herein presented ex-
periment was aimed to assess the behavior of our ap-
proach to index a collection, i.e. computing the shape
thesaurus and the corresponding inverted indexz.

To cluster the segments in the shape pool we used a
generic k-means clustering algorithm based on a com-
bination of local search and Lloyd’s algorithm. In our
approach, the dataset to be clustered contains the sig-
natures of segments in the shape pool. Basically, this
dataset consists on a set of points in a high-dimensional
space. More precisely, due to the shape descriptor we
applied, this space has 544 dimensions. Indeed, is the
large dimensionality of the dataset to cluster that makes
the whole clustering process more complex.

During this experiment we studied the behavior of
the clustering algorithm with datasets of different sizes,
while modifying the number of clusters in the produced
partition. The larger dataset tested contained less than
ten thousand points and corresponds to the shape pool
produced by the decomposition of models in the com-
plete ESB collection, which occupies less than thirty
megabytes of memory. Since the memory required to
compute the partition of a dataset is just slightly higher
that the memory used by the dataset and the centers of
the clusters, the memory consumption of the clustering
algorithm is not an issue in our approach. Thus, in this
experiment we focused our attention on the execution
time of the segment clustering algorithm.

The observed execution times confirmed the linear
time-complexity of the clustering algorithm. As depicted
in Figure 19, the execution time grows proportionally
to shape pool size and cluster count. For example, con-
sidering the whole ESB collection, whose shape pool
contains 9131 segments, determining a partition with
one hundred clusters took around six hundred seconds,
while computing a partition with eight hundred clus-
ters took around six thousand seconds. This observa-
tion strengthens the importance of a reasonable size for

2 Indeed, the ESB collection contains a total of 866 models,
but due to technical problems reading a few files, we discarded
thirteen models.

: ez
i //
3 v

. —

Shape Pool Size
(Collection)

—e—9131 (ESB)
3260 (SoR)

—e—1392 (RCP)

——429 (FTC)

Time (thousand secs.)

0 100 200 400 600 800 1000

Cluster Count

Fig. 19 Execution time of segment clustering for different col-
lections, while varying the number of clusters to be created).

the shape thesaurus. Indeed, a larger thesaurus will cor-
respond to a heavier segment clustering process but led
to a more efficient retrieval, while a smaller thesaurus
will produce larger inverted lists in the inverted index,
which will reduce the efficiency of the retrieval process.

From the statements above one can wrongly con-
clude that the thesaurus should contain as many terms
as possible. However, this is not absolutely true: an
excessively large thesaurus can easily become ineffec-
tive. In an extreme situation, a thesaurus will have the
same number of entries than the segments in the pool,
i.e. each term corresponds to a single segment. In this
case. there is no point in using the thesaurus. It will
be similar to search directly in the shape pool, which is
exactly what we want to avoid. In the near future we
intend to study this topic and present some suggestions
regarding the determination of a ”good” thesaurus size.
For now, based on empirical tests, we will consider that
the shape thesaurus to index the ESB collection will
have eight hundred terms.

Finally, construction of the shape thesaurus and cor-
responding inverted inder from the resulting partition
is a straightforward task accomplished in insignificant
time (less than ten seconds) when compared to the
Shape Pool partition partition computation. On the
other hand, the indexing structures are relatively small
when compared with the real collection size. Indeed, the
thesaurus containing the eight hundred signatures and

corresponding identifiers requires less than two megabytes,

while the inverted index needs around forty kilobytes.
The structure that stores the shape pool, a dataset con-
taining more than nine thousand signatures uses about
eighteen megabytes of memory. Summing, the memory
required to store the whole indexing structure for the
ESB collection will be within the tens of megabytes.

18

¥
0
v
7
o

Fig. 20 Query results.

6.6 Retrieval of 3D models

Despite the importance of the classification component
in our approach to shape retrieval, the success of our
solution depends on the results produced by the re-
trieval process. When a query is submitted, a success-
ful retrieval system should provide an accurate answer
in short time. To verify if our solution satisfies this
premise, we tested our approach as described below.

To evaluate the retrieval efficiency and accuracy of
the thesaurus-based 3D shape retrieval introduced on
this research work, we submitted five distinct queries
to the system and studied its behaviour. From these
queries three (Q3 to Q5) were subparts of existing mod-

els in collection, while two (@1 and @2) were complete
models from the ESB collection. These shapes are de-
picted together with the returned results in Figure 20
and were randomly selected from the shape pool and
collection, respectively.

In our approach, when a query shape is submitted
the first step consists on estimating its SHA signature.
The next step of the retrieval process consists on find-
ing similar terms in the thesaurus and retrieving the
associated models. We measured the descriptor compu-
tation time separately from the searching time, as pre-
sented in Table 1. We emphasise that the first depends
exclusively on the query shape and shape descriptor,
while the second is affected by several factors, such as

19

Queries
Q1 Q2 Q3 Q4 Qs
SHA computation (e¢) | 1.182 1.187 1.085 1.163 1.120
Search (b) 0.162 0.172 0.181 0.165 0.161
Query (a +b) 1.344 1.359 1.266 1.328 1.281

Table 1 Measured time (in seconds) while performing the queries using a given shape.

the number of terms in the thesaurus, signature dimen-
sionality or shape pool size.

The observed results show that the computation of
the query shape signature,due to its inherent complex-
ity, consumes most of the time spent while querying the
collection. Indeed, while estimating the query signature
took more than one second, in average, searching for
models that satisfy the query took less than two tenths
of a second. Moreover, none of these values depend di-
rectly on the collection size, which means that larger
collections will only slightly affect the query time.

When a complete object from the collection, such as
query (1, is submitted to the system the first returned
result, Ry 1, is exactly that model, as expected. Obvi-
ously, it is the more similar to the query shape, since
it is the same object. The following model returned by
query, R; o, satisfies a part-in-whole matching with the
query, i.e. a sub-part of R o is very similar to Q.

The remaining returned models are less similar to
the query shape. Indeed, while Ry 3 and R 5 has visible
similarities with the query shape, only a unnoticeable
sub-part of R; 4 has some similarity with the query. As
often occurs, the matching sub-part is not easily recog-
nisable in the returned model. To assist the reader in
the recognition of the similar sub-part, we illustrate it
in Figure 21. We recall that this sub-part was automat-
ically detected by the CAS algorithm during the clas-
sification phase as a distinctive segment of the original
model. During the retrieval process, after being iden-
tified as associated to a matching thesaurus term, the
geometric similarity between the subpart and the query
shape is measured using the SHA descriptor. The esti-
mated distance dsga(Q1, R1,4) between the two signa-
tures represents the partial similarity between the two
models.

In another example, the shape Q5 is itself a sub-part
of a model. As expected, the first retrieved model is the
one to which this sub-part was extracted, the model
Rs 1. The other retrieved models, R5 2 to Rs 5, contain
sub-parts similar to the query. Thus, in this example,
all retrieved models satisfy a part-in-whole match with
the query.

dSHA (Ql, R1,4) =0.3226

.............................

Ri4

Fig. 21 Detail of retrieved model R1 4.

The ability to quickly retrieve models that are glob-
ally similar to a query or just partially similar, shown
in the two examples described above, is one of the major
achievements of our approach. Considering that through
the use of a thesaurus and inverted index the scalabil-
ity of this approach is unquestionable, we believe that
we showed a possible path for a functional 3D retrieval
system. While the classification component of our ap-
proach require further improvements to effectively sup-
port very large collections, the retrieval component is
already able to provide quick and accurate answers to
3D queries.

On the other hand, we need to measure the retrieval
accuracy of our system, behind the examples presented
above, for instance using precision-recall diagrams - a
prevalent indicator to assess effectiveness of retrieval
systems. The most common experimental methodology
to evaluate the accuracy of a generic information re-
trieval system relies on a test collection, a set of queries,
and a set of relevance judgements indicating which re-
sults are relevant for each query [46]. In the present con-
text, the ESB is considered as a test collection, while
the shapes Q1 to Q5 are seen as the query set. However,
no relevance judgement exist for this or, to the extent of

20

our knowledge, for any other query set regarding partial
matching. Indeed, we are planning to perform, in short
term, a user study to establish well-grounded relevance
judgements for a set of queries regarding part-in-whole
matching in the ESB collection.

7 Conclusions and Future Work

As stated above, the tests we've made pointed out to
reasonable Shape Pool sizes while processing the bench-
mark collections. Every time a segment is segmented
the Shape Pool grows, thus the probability of finding
more similar segments gets larger. This means that, af-
ter a few iterations of the algorithm, the number of
segments identified as decomposable starts decreasing
due to the growth of the Shape Pool. Such fact is impor-
tant for our research because it ensures that the Shape
Pool size does not increase behind a reasonable limit,
as depicted in Figure 16. Based on this conclusion and
now that we have a working prototype, we aim at expe-
riencing the proposed approach with larger collections
in a near future.

Roughly speaking, we can state that our approach
to construct a shape thesaurus for 3D shape retrieval
with part-in-whole matching is done. Indeed, further
testing is needed and we will do it as part of future re-
search, but as a proof of concept both our CAS/HFP
algorithm and thesaurus based retrieval approach ap-
parently work. Analysing the work we developed and
what is missing, we believe that the initial goal was at-
tained. Indeed, the developed prototype is capable of
producing a shape thesaurus from a collection of 3D
models and retrieve models with partial queries.

However, the described approach supports only whole-

to-part searches, i.e. the query is matched as a whole
against parts of models in the collection. Still, with
some additional effort it will be easy to achieve full
partial matching, where will be possible to find models
with parts similar to parts of the query. To that end, a
partial matching algorithm can be used instead of glob-
ally match the query with the terms in the thesaurus.
Alternatively, the query itself can be decomposed by
the CAS algorithm and the resulting subparts will be
then matched against the terms in the thesaurus.
Additionally, several unsolved issues were identified
and must be tackled in the future. Among others, we
highlight three major subjects to look at. One is ex-
periment the use of supervised classification algorithms
to create the shape thesaurus instead of clustering. We
believe that taking advantage of additional shape seg-
ment information might lead to better thesaurus, which
will provide sounder retrieval results. Another is the use

of more efficient k-NN search methods to improve re-
trieval speed. Indeed, we used a naive k-NN algorithm
that runs in linear time with respect to thesaurus size,
but several sub-linear approaches are available, such
as the kd-tree [39] or the nb-tree [47]. The third is
the computation of segment relevance in the original
model, considering, for instance, the percentage of sur-
face area that corresponds to the segment. Using such
relevance information models could be ranked in the
inverted lists, providing more accurate query results.

References

1. Johnson, A.E., Hebert, M.: Recognizing objects by matching
oriented points. In: CVPR ’97: Proceedings of the 1997 Con-
ference on Computer Vision and Pattern Recognition (CVPR
’97), p. 684. IEEE Computer Society, Washington, DC, USA
(1997)

2. Gal, R., Cohen-Or, D.: Salient geometric features for par-
tial shape matching and similarity. ACM Transactions on
Graphics 25(1), 130-150 (2006)

3. Shilane, P., Funkhouser, T.: Distinctive regions of 3d sur-
faces. ACM Transactions on Graphics 26(2), 7 (2007)

4. Suzuki, M.T., Yaginuma, Y., Yamada, T., Shimizu, Y.: A
partial shape matching method for 3d model databases. In:
Proceedings of the Ninth IASTED International Conference
on Software Engineering and Applications (SEA2005), pp.
389-394. ACTA Press, Phoenix, USA (2005)

5. Suzuki, M.T., Yaginuma, Y., Shimizu, Y.: A partial shape
matching technique for 3d model retrieval systems. In: ACM
SIGGRAPH 2005 Posters, p. 128. ACM Press, New York,
NY, USA (2005)

6. Silverstein, C., Marais, H., Henzinger, M., Moricz, M.: Analy-
sis of a very large web search engine query log. SIGIR Forum
33(1), 6-12 (1999)

7. Funkhouser, T., Kazhdan, M., Shilane, P., Min, P., Kiefer,
W., Tal, A., Rusinkiewicz, S., Dobkin, D.: Modeling by exam-
ple. ACM Transactions on Graphics 23(3), 652-663 (2004).
DOI http://doi.acm.org/10.1145/1015706.1015775

8. Ruge, G.: Automatic detection of thesaurus relations for in-
formation retrieval applications. In: Foundations of Com-
puter Science: Potential - Theory - Cognition, to Wilfried
Brauer on the occasion of his sixtieth birthday, pp. 499-506.
Springer-Verlag, London, UK (1997)

9. Joyce, T., Needham, R.M.: The thesaurus approach to infor-
mation retrieval. Readings in information retrieval pp. 15—20
(1997)

10. Curran, J.R., Moens, M.: Improvements in automatic the-
saurus extraction. In: Proceedings of the ACL-02 workshop
on Unsupervised lexical acquisition, pp. 59-66. Association
for Computational Linguistics, Morristown, NJ, USA (2002).
DOI http://dx.doi.org/10.3115/1118627.1118635

11. Milne, D.N., Witten, I.H., Nichols, D.M.: A knowledge-
based search engine powered by wikipedia. In: CIKM
’07: Proceedings of the sixteenth ACM conference on Con-
ference on information and knowledge management, pp.
445-454. ACM, New York, NY, USA (2007). DOI
http://doi.acm.org/10.1145/1321440.1321504

12. Crouch, C.J.: A cluster-based approach to thesaurus con-
struction. In: SIGIR °’88: Proceedings of the 11th
annual international ACM SIGIR conference on Re-
search and development in information retrieval, pp.
309-320. ACM, New York, NY, USA (1988). DOI
http://doi.acm.org/10.1145/62437.62467

21

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

Brin, S., Page, L.: The anatomy of a large-scale hypertextual
web search engine. Comput. Netw. ISDN Syst. 30(1-7), 107—
117 (1998)

Paquet, E., Rioux, M.: Nefertiti: A query by content software
for three-dimensional models databases management. 3dim
00, 345 (1997)

Funkhouser, T., Min, P., Kazhdan, M., Chen, J., Halderman,
A., Dobkin, D.; Jacobs, D.: A search engine for 3d models.
ACM Trans. Graph. 22(1), 83-105 (2003)

Funkhouser, T., Kazhdan, M., Min, P., Shilane, P.: Shape-
based retrieval and analysis of 3d models. Communications
of the ACM 48(6), 58-64 (2005)

Lou, K., Prabhakar, S., Ramani, K.: Content-based three-
dimensional engineering shape search. International Confer-
ence on Data Engineering p. 754 (2004)

Chen, D.Y., Tian, X.P.; Shen, Y.T., Ouhyoung, M.: On vi-
sual similarity based 3d model retrieval. Computer Graphics
Forum 22(3), 223-232 (2003)

Vranié, D.V.: 3d model retrieval. Ph.D. thesis, University of
Leipzig, Germany (2004)

Assfalg, J., Bimbo, A.D., Pala, P.: Content-based retrieval of
3d models through curvature maps: a cbr approach exploiting
media conversion. Multimedia Tools and Applications 31(1),
29-50 (2006)

Ansary, T.F., Daoudi, M., Vandeborre, J.P.: A bayesian 3D
search engine using adaptive views clustering. IEEE Trans-
actions on Multimedia 9(1), 78-88 (2007)

Ansary, T.F., Daoudi, M., Vandeborre, J.P.: 3d-models
search engine from photos. In: Proceedings of ACM Inter-
national Conference on Image and Video Retrieval (CIVR
2007). Amsterdam, The Netherlands (2007)

Suzuki, M.T., Yaginuma, Y., Sugimoto, Y.Y.: A 3d model
retrieval system for cellular phones. In: Proceedings of IEEE
International Conference on Systems, Man and Cybernetics,
vol. 4, pp. 3846-3851. IEEE Computer Society (2003)

Lv, Q., Josephson, W., Wang, Z., Charikar, M., Li, K.: Ferret:
a toolkit for content-based similarity search of feature-rich
data. SIGOPS Oper. Syst. Rev. 40(4), 317-330 (2006)
Bustos, B., Keim, D.A., Saupe, D., Schreck, T., Vranié, D.V.:
Feature-based similarity search in 3d object databases. ACM
Computing Surveys 37(4), 345-387 (2005)

Ruiz-Correa, S., Shapiro, L.G., Meila, M.: A new paradigm
for recognizing 3-d object shapes from range data. In: ICCV
’03: Proceedings of the Ninth IEEE International Confer-
ence on Computer Vision, p. 1126. IEEE Computer Society,
Washington, DC, USA (2003)

Kazhdan, M.: Shape representation and algorithms for 3d
model retrieval. Ph.D. thesis, Princeton University (2004)
Bespalov, D., Shokoufandeh, A., Regli, W.C., Sun, W.: Scale-
space representation of 3d models and topological matching.
In: Proceedings of the 8" ACM symposium on Solid Mod-
eling and Applications, pp. 208-215. ACM Press, New York,
NY, USA (2003)

Cornea, N.D., Demirci, M.F., Silver, D., Shokoufandeh, A.,
Dickinson, S.J., Kantor, P.B.: 3d object retrieval using many-
to-many matching of curve skeletons. In: SMI ’05: Proceed-
ings of the International Conference on Shape Modeling and
Applications 2005, pp. 368-373. IEEE Computer Society,
Washington, DC, USA (2005)

Biasotti, S., Marini, S., Spagnuolo, M., Falcidieno, B.: Sub-
part correspondence by structural descriptors of 3d shapes.
Computer-Aided Design 38(9), 1002-1019 (2006)

Tierny, J., Vandeborre, J.P., Daoudi, M.: Partial 3d shape re-
trieval by reeb pattern unfolding. Computer Graphics Forum
28, 41-55 (2009)

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

43.

44.

45.
46.

47.

Suzuki, M.T., Kato, T., Otsu, N.: A similarity retrieval of
3d polygonal models using rotation invariant shape descrip-
tors. In: Proceedings of IEEE International Conference on
Systems, Man and Cybernetics, vol. 4, pp. 2946-2952. IEEE
Computer Society, Nashville, TN, USA (2000)

Campbell, R.J., Flynn, P.J.: A survey of free-form object rep-
resentation and recognition techniques. Comput. Vis. Image
Underst. 81(2), 166-210 (2001)

Attene, M., Falcidieno, B., Spagnuolo, M.: Hierarchical mesh
segmentation based on fitting primitives. Vis. Comput.
22(3), 181-193 (2006)

Kazhdan, M., Funkhouser, T., Rusinkiewicz, S.: Rotation in-
variant spherical harmonic representation of 3d shape de-
scriptors. In: L. Kobbelt, P. Schroder, H. Hoppe (eds.) Pro-
ceedings of the 2003 Eurographics/ACM SIGGRAPH sym-
posium on Geometry processing, pp. 156-164. Eurographics
Association, Aire-la-Ville, Switzerland (2003)

Jayanti, S., Kalyanaraman, Y., Iyer, N., Ramani, K.: De-
veloping an engineering shape benchmark for cad models.
Computer-Aided Design 39(9), 939-953 (2006)

Attene, M., Biasotti, S., Mortara, M., Patan, G., Spagnuolo,
M., Falcidieno, B.: Computational methods for understand-
ing 3d shapes. Computers & Graphics 30(3), 323 — 333
(2006). DOI DOI: 10.1016/].cag.2006.02.007

Agathos, A., Pratikakis, I., Perantonis, S., Sapidis, N., Azari-
adis, P.: 3D mesh segmentation methodologies for cad ap-
plications. Computer-Aided Design and Applications 4(6),
827-841 (2007)

Bentley, J.L.: Multidimensional binary search trees used for
associative searching. Commun. ACM 18(9), 509-517 (1975)
Anderberg, M.R.: Cluster analysis for applications. Aca-
demic Press, New York (1973)

Kogan, J.: Introduction to Clustering Large and High-
Dimensional Data. Cambridge University Press, New York,
NY, USA (2007)

Lloyd, S.P.: Least squares quantization in pcm. IEEE Trans-
actions on Information Theory 28(2), 129-137 (1982)
Kanungo, T., Mount, D.M., Netanyahu, N.S., Piatko, C.D.,
Silverman, R., Wu, A.Y.: An efficient k-means clustering al-
gorithm: Analysis and implementation. IEEE Transactions
on Pattern Analysis and Machine Intelligence 24(7), 881-892
(2002)

Baeza-Yates, R.A., Ribeiro-Neto, B.: Modern Information
Retrieval. Addison-Wesley Longman Publishing Co., Inc.,
Boston, MA, USA (1999)

Attene, M.: ’efpisoft’. http://efpisoft.sourceforge.net/ (2006)
Cormack, G.V., Palmer, C.R., Clarke, C.L.A.: Efficient con-
struction of large test collections. In: SIGIR ’98: Proceed-
ings of the 21st annual international ACM SIGIR confer-
ence on Research and development in information retrieval,
pp. 282-289. ACM, New York, NY, USA (1998). DOI
http://doi.acm.org/10.1145/290941.291009

Fonseca, M.J., Jorge, J.A.: Indexing High-Dimensional Data
for Content-Based Retrieval in Large Databases. In: Pro-
ceedings of the 8th International Conference on Database
Systems for Advanced Applications (DASFAA’03), pp. 267—
274. IEEE Computer Society Press, Kyoto, Japan (2003)

