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This paper describes a new technique for the triangulation of parametric surfaces. Most 
earlier methods sample the parameter domain, and the wrong choice of parameterization 
can spoil the triangulation or even cause the algorithm to fail. Conversely, we use a local 
tessellation primitive to sample and triangulate the surface. The sampling is almost 
uniform and the parameterization becomes irrelevant. If sampling density or triangle 
shape has to be adaptive, the resulting uniform mesh can be used either as an initial coarse 
mesh for a refinement process, or as a fine mesh to be reduced. 
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1. INTRODUCTION 
 

Parametric surfaces are an important tool for computer-aided design (CAD) systems. 
Although they are considered a standard in CAD/CAM, parametric surfaces are not particularly 
suitable for some applications that emerged after their conquest of the CAD community. This 
moved a number of researchers towards the study of techniques for the discretization, or 
tessellation, of such surfaces for visualization or for analysis purposes. Nowadays, the most 
used approaches are based on advancing front [1][2] or Delaunay triangulation [3][4][5], and  
there are ad hoc methods for specific surface classes [6][7][8]. In cases such as surface 
reconstruction [9][10] the vertices are given, but here the tessellator has to sample the surface 
and construct a mesh connecting the samples. Most existing methods do both steps in parameter 
space: first, they create a triangulation of the surface’s 2D domain, then the final tessellation is 
obtained by mapping the vertices to 3D space, without changing the connectivity. A uniform 
sampling of the parameter space could be quite inappropriate, so adaptive methods [11][1] are 
preferred where an initial coarse mesh is iteratively refined depending on some error metric. 
Adaptive methods, however, need a starting mesh and, if the surface is well-behaved, this can be 
achieved by a coarse uniform sampling of the parameter domain, otherwise, some problems may 
arise, as described in the next section. 

This paper proposes a method for sampling and triangulating the surface independently of 
the parameterization [12], so that bad mapping properties do not spoil the final triangulation. In 
the rest of this paper we introduce a novel tessellation primitive, the Normal Umbrella, and 
describe how to use it to build a quasi-uniform approximation of a surface. Also, we show that 
this primitive can produce meshes suitable for a wide range of applications. Specifically, the 
quasi-uniform tessellation is by nature suitable for a Finite Element simulation, where typical 
numerical algorithms require the triangle shape and size to be as regular as possible. For 
applications requiring fast rendering, we show how to perform remeshing in order to decrease 
both the polygon count and the approximation error, at the price of a loss of uniformity. 

 
 



 
 

2. PREVIOUS WORK 
 

The problem of visualizing a parametric surface has been studied for over 20 years [13] and 
many approaches have been proposed, including a number of polygonization-based strategies. 
The earliest methods simply traced lines of constant u or v in the parametric space. This 
produces a level of detail unrelated to what is required by the display. Lane et al. [28] proposed 
an efficient scan-line method and by 1983 methods based on ray tracing had been reported 
[13][14]; here the main problem was efficiently calculating the first point of intersection of a 
straight half-line with the surface. A solution to this problem has been proposed in [15], where a 
polygonization approach is presented by which the first intersection point can be computed 
effectively. 

The tessellation of parametric surfaces, however, has been mainly developed for direct 
visualization [11] and for FEM applications [3]. As described in [16][17], the scientific 
literature includes approaches for generating either isotropic meshes, in which the element size 
and shape is roughly constant, or anisotropic ones, in which the sampling density varies 
depending on the surface curvature and triangles are stretched along the principal curvature 
directions. Typically, isotropic meshes are preferable for structural simulation and FEM 
applications, while anisotropic meshes are a good choice for visualization purposes. Such a 
distinction made most researchers to propose methods for the creation of meshes of either one or 
the other class, but not both. In this paper we give a more general framework, and describe a 
flexible method for creating both isotropic and anisotropic meshes. 

Existing methods for isotropic mesh generation are generally based on iterative 
repositioning of an initially random vertex set [18], or on physical principles of force balancing 
in the mesh [3][19]. In the method described in [18], the user chooses the number of vertices n 
of the final mesh and a parameter q for the so-called shape function, which describes the local 
‘curvedness’ of the surface. The algorithm displaces n vertices randomly on the parameter 
domain and iteratively adjusts their positions in order to fit the shape function. Similarly, in [3] 
the method takes as input the domain geometry and a node-spacing function, and then generates 
a mesh, or a set of connected triangles, that satisfies basic requirements such as a precise control 
over node spacing or triangle size. The initial nodes are placed using recursive spatial 
subdivision. The resulting mesh is relaxed by assuming the presence of proximity-based, 
repulsive/attractive internode forces and then performing dynamic simulation for a force-
balancing configuration of nodes. 

Unfortunately, due to their converging nature, these approaches lack a formal complexity 
estimate and, even more important, the number of samples must be fixed in advance, instead of 
depending on the surface area. An exception in this class of algorithms is the marching method 
presented in [20], which is close in spirit to the one we describe in the following sections. The 
marching method, that was originally defined for the polygonization of implicit surfaces, uses a 
local tessellation primitive consisting of a fan of triangles around a sample point. In particular, 
for a given surface point p, the method draws a regular hexagon with center p on the 
corresponding tangent plane. The boundary of the hexagon is projected on the surface using a 
gradient descent procedure and, for each boundary vertex, the process is repeated until the 
whole surface is covered. Although this approach is very effective on nearly-flat implicit 
surfaces, the evaluation of lengths on the tangent plane can introduce significant errors in 
regions of high curvature, moreover the necessity of a numerical implicitization for treating 
parametric surfaces can introduce a further error. 

The creation of anisotropic meshes [21][11] is mainly based on adaptive schemes; in these 
cases the main drawback is the dependency on the surface definition. An example of such a 
problem is shown in Fig. 1; the same surface is defined in two different ways on the same 2D 
domain, and the adaptation criterion splits an edge in its middle 2D point if the image of this 
point is too far from the image of the edge in the Euclidean 3D space [11]. While in the first row 
(a) the initial coarse mesh has to be subdivided, it has not to be in the second case (b). On the 
other hand, if the initial coarse mesh were fine enough for catching the surface details, a huge 
number of redundant vertices would have to be created. In other words, the choice of the 



parameterization influences the resulting triangulation and, as we show in the following 
sections, a bad parameterization can spoil the result. From a mathematical point of view, we call 
“good parameterization” a function in which all the directional derivatives are close to a 
constant k throughout the whole domain. 
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… no edge split required … 

 
FIG. 1. The initial coarse mesh could not detect some surface details, preventing edge splits. 

 
In the following sections we discuss a novel approach that does not suffer from these 

drawbacks. The remainder of the paper is organized as follows: some remarks on definitions and 
notation are presented, then the normal umbrella and its use as a tessellation primitive is 
explained and, finally, we give a brief description of the necessary extensions for the creation of 
closed and adaptive triangulations. 
 
 

3. PARAMETRIC SURFACES 
 

The image of a position vector-valued function f : A ⊆ ℜ 2 → ℜ 3, f(u,v) = <x(u,v), y(u,v), 
z(u,v)> is called a parametric surface. The subset of ℜ 2 from which the two parameters u and v 
take their values, usually the square [0,1]×[0,1], is called the parameter domain. The function f 
is called a parameterization, or mapping, and it serves only as a representation of the surface we 
are interested in. The same surface can be represented by several mappings, as shown for 
example in Fig. 2, and the application of a given tessellator can give different results depending 
only on the way the surface has been parameterized. 
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FIG. 2. The same plane can be defined in several different ways on the same domain. 



 
Since the tessellator should approximate the surface, and not its representation, such  

behavior is not a good characteristic. Worse than that, the wrong choice of parameterization for 
a surface could lead to quite bad results, as shown in Fig. 3. 
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FIG. 3. The wrong choice of the parameterization can spoil the tessellation of the cylinder. 

 
 

4. UNIFORMLY SAMPLING A SURFACE 
 

In this section we analyze the problem of sampling a parametric surface independently of 
its definition. We discuss how to tackle the problem for 2D parametric curves, and show that 
there is an intrinsic hitch for generic 3D surfaces. 

The problem of generating an isotropic mesh independently of the parameterization can be 
approached from different points of view and, among the others, we tried to answer the 
following questions: 
 
1. How to find a sampling that is as uniform as possible on the surface rather than on its 

domain ? 
2. Is it possible to re-parameterize the surface so that a uniform grid in parameter space maps 

uniformly on the surface ? 
 
Let us consider the second question in the case of plane curves. For a regularly parameterized 
curve c(t) = <x(t), y(t)>, the arc length between two points can be computed using the 
integration of the curve tangent vector. Starting from this, it is not difficult to derive a 
parameterization of the same curve based on the curvilinear abscissa. The curve is the same, but 
for the new mapping a uniform sampling of the parameter space maps uniformly on the curve. 
In [22] the problem has been approached in order to find a piecewise linear approximation of a 
plane curve in which each segment forms the same angle with the next one. In the same paper 
they attempted to define a reasonable extension for surfaces, but the author himself could not 
prove whether a solution exists or not. In the case we want to create an isotropic tessellation, it 
is not difficult to find a counterexample, as shown in Fig. 4. 
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FIG. 4. An exactly uniform mesh does not always exist on curved surfaces. 

 
While in the plane it is always possible to create a closed fan of equilateral triangles around 

each point, that is, a triangulation in which all the edges have the same length, this cannot 
always be achieved for generic 2-manifolds. 
 
 

5. THE NORMAL UMBRELLA 
 

In the previous section it has been shown that, for a generic surface, an approximating mesh 
that is perfectly uniform (i.e. all the edges have exactly the same length) may not exist. For most 
applications a good approximation is enough, so we define a local quasi-isotropic approximation 
called the Normal Umbrella, or NU. 

 
Definition: 6th degree normal umbrella 

Given a point pp in the parameter domain whose image in the surface is p, let H = {p1, p2, .., 
p6} be a regular hexagon centered on p and lying on the tangent plane at p, Tp(p). For each pi, 
draw a curve on the surface from p to a point qi so that its projection on Tp(p) is a straight line 
parallel to vi = pi – p, and ||qi-p||=r. Connect each end-point, qi, with its neighbor, qi+1. This 
process defines a 6th degree normal umbrella of radius r and center p which will be triangulated 
by the star {(p,q1,q2), (p,q2,q3), ..,(p,q6,q1)}. The result of this process is shown in object and 
parameter space in Fig. 5. 

 
In general, we define an nth degree normal umbrella for every n ≥ 3. Thus, drawing an 

equilateral triangle on the tangent plane leads to a 3rd degree NU, a square leads to a 4th degree 
NU, and so on. 
 



 

p 

q1

q2

q3 q4 

q5

q6 

u 

v 

u

v

pp 

 
FIG. 5. A 6th degree normal umbrella and its pre-image in parameter space. 

 
Although the Normal Umbrella is based on a regular hexagon on the plane, as the surface 

curvature increases the edges connecting the end points qi - qi+1 become shorter. Since we want 
the edges to have about the same length, this behavior suggests that the number of paths to be 
tracked, n, should depend on the local curvature, specifically, high positive Gaussian curvature 
implies n < 6, while high negative curvature implies n > 6. Actually the curvature can change 
along the path, so we need a more accurate evaluation: consider all the paths emanating from the 
point p whose projection on the tangent plane is a straight line and whose end-point distance 
from p is r. Except for special cases, the end-points of these paths constitute a closed surface 
line that we call a Normal Umbrella- Front (NU-front). If the length of the NU-front is L, then 
the optimal number of triangles n around the point p is the closest integer to L/r. In this context, 
“optimal” means that the piecewise linear approximation of the NU-front is composed of 
segments whose length is as close as possible to r. In the case of a plane, for example, the NU-
front is the circle of radius r, so its length L is 2πr and n = round(2π) = 6. The length of the 
NU-front of a paraboloid’s tip is ≤ 2πr, so n ≤ 6 while in the case of a saddle point L ≥  2πr, so n 
≥ 6. Special cases arise when an excessive radius of the NU for the given surface point is 
required; for example, the NU-front on the unit sphere when r=2 collapses on a single point (the 
antipodean of the NU center), while the NU-front on a radius 1 cylinder becomes multiply 
connected if r>2. If, at some point of the polygonization process, the NU-front is not a single 
surface line, we declare that the chosen sampling step is too big for the given surface. 

5.1. Computing the Normal Umbrella 
 

The main difficulty in computing the normal umbrella comes from the fact that the 
definition is based on tracking surface paths and, since we can only play with parameters, 
tracking such paths is not a trivial operation. Fortunately, differential geometry [23] provides all 
the tools we need. 

5.2. Normal Sections 
 

The paths to be tracked for building the normal umbrella are parts of normal sections, 
which are defined for each point as the intersection of the surface and a normal plane. Although 
a normal section can be made of several connected components, we want to preserve the 



topology [24], so we are only interested in the component containing the generating point. By 
means of differential calculus, it is not difficult to prove that the following system of differential 
equations represents the component we are interested in: 
 

 
 
where n is the normal of the generating point f(u0,v0), d is a tangent unit vector belonging to the 
intersecting normal plane, and fu and fv are the two derivatives of the mapping function. 

When building a normal umbrella of a given radius at a point, a direction d for each path 
must be chosen. It is important to consider that the normal umbrella is not unique, in fact, there 
exist infinitely many regular hexagons1 on the tangent plane. And since we have no particular 
preference, the direction of the first path is arbitrary, while the others have to be computed 
according to this first one. Once a path has been tracked, its projection on the tangent plane is a 
straight segment, and the projection of each path must produce an angle α of exactly 60 degrees 
with the previous one. In general, when building an nth degree normal umbrella, the angle α 
between two consecutive projections must be 2π/n. 

5.3. The NU as a tessellation primitive 
 

The normal umbrella makes it possible to create a simple triangulation around a sample 
point, and such a triangulation is independent of the surface definition. To extend this 
characteristic to triangulations of complete surfaces, we can use the NU as a tessellation 
primitive. Given a parametric surface and a desired edge length, let us choose some point of the 
parameter domain and build an appropriate normal umbrella around its image. Now pick a 
vertex, v, of the boundary of the NU and complete its fan, treating the triangles meeting at v as if 
they were already part of a normal umbrella around v. Repeating the latter step until all the 
parameter domain is spanned and avoiding overlaps, gives a rough solution of the problem. 
Now let us see how to perform these steps in detail. 

5.4. Completion of a partial approximate NU 
 

Except for the starting NU, each step must complete the fan of triangles around a vertex of 
the current boundary in the following way (with reference to Fig. 6.): 
 
1. Compute the part of NU-front between the two boundary edges. 
2. Divide it in equal parts so that the distance between the end-points of each part is as close 

as possible to the desired edge length. 
3. Consider the end-points of the paths separating two adjacent parts. 
4. Connect these end-points by edges and triangulate with the NU center. 
 

 

                                                 
1 For simplicity we restrict the explanation to the 6th degree NU, but it holds for every degree ≥ 3. 



               
 

4

 

3

 

2 

 

1 
 

FIG. 6. The four steps for completing a partial approximate NU around a boundary vertex. 

 
The procedure described above surrounds each vertex with a variable number of triangles. 
When the desired edge length is small enough, we have experienced that this number (i.e. the 
valence of the vertex) is exactly 6 on planar regions, less than 6 on sufficiently convex/concave 
regions, and more than 6 on saddles. 
 

6. THE TILING ALGORITHM 
 

A few more details must be considered in order to design a working algorithm. Firstly, at 
each step a vertex must be processed and it must be chosen from those of the current boundary. 
It is not difficult to see that the order of the processing influences the final result, in particular, 
the insertion of some short edges (that is, thin triangles) may be required in some cases, since 
nothing of what we said till now prevents the boundary forming acute angles at any step. By 
experiment we have found that choosing the vertex with the smallest angle to be triangulated 
drastically reduces such cases. So we sort the boundary vertices in a queue and, at each step, we 
pop the first vertex from it. A similar method has been used by Hartmann in [20], where the 
expansion on the implicit surface proceeds using the same sorting technique for choosing the 
boundary vertex to be triangulated. Summarizing, the following is a sketch of the algorithm: 
 
1. INPUT: Surface definition (mapping function), parameter domain (bounds or trimming 

curves) and desired edge length (sampling step); 
2. Choose a random point of the parameter domain and build the starting NU; 
3. Build the queue containing the boundary vertices whose pre-image is not on the boundary 

of the parameter domain; 
4. Pop the first vertex from the queue, complete its approximate NU and update the queue; 
5. While the queue is not empty go to 4. 
 

As explained in section 5, the number of paths to be tracked around the first vertex (that is, 
the degree of the NU) depends on the length of the NU-front and the radius. In our 
implementation we compute this length by linearly interpolating the end-points of a fixed 
number of normal sections around the vertex. Of course, the higher this number, the more 
precise is the result. The adaptive step-size Runge-Kutta method [25] is used to track the normal 
sections. When tracking a path, we prevent crossings of the domain boundary by breaking the 
process on the first intersection point. This makes the final triangulation less uniform near the 
boundary. 

6.1. Intersection checks 
 

In cases where the curvature is particularly high it may happen that the iterative expansion 
of the mesh makes the boundary intersect itself, so, before inserting a new edge, we perform an 
intersection test between the edge and the other parts of the current boundary.  

 
 
 



7. IMPLEMENTATION AND COMPLEXITY 
 

We have implemented our method, including the extensions outlined in the following 
sections, using standard C++ under Linux. The prototype tessellates surfaces defined over a 
rectangular domain whose bounds must be specified by the user. The mapping function must be 
defined using the standard C syntax and it must be coupled with its partial derivatives; in the 
current version, derivatives must be provided by the user, however they could be automatically 
computed using a symbolic calculus library. 

We give the complexity as a function of the area of the surface to be triangulated. Let A be 
this area; the number of elements of the boundary is O(A1/2). The number of triangles is linearly 
proportional to A, and the computation of each one of them requires O(A1/2) intersection checks. 
The priority queue contains only the boundary vertices, so its size is O(A1/2), and the insertion of 
each new vertex requires an update of the queue, that is, O(log(A1/2)) operations. Summarizing, 
the algorithm performs O(A) steps, and the dominating operation of each step takes O(A1/2) time, 
thus the global complexity is O(A1.5). 

 
 

8. EXTENSION TO CLOSED SURFACES 
 

The basic algorithm, as it has been described, can only manage open surfaces with the same 
topology as their parameter domains. In order to build the tessellation of surfaces with different 
topology, we look for paths of (u,v) points that map on a unique 3D image (cutting line). For 
example, in the typical definition of the sphere by parallels and meridians, the two lines (0,0)-
(0,1) and (1.0)-(1,1) of the parameter domain map on the same meridian (Fig. 7.). 
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FIG. 7. Two edges of the parameter square map on the same line on the sphere. 

 
We have implemented a sewing procedure based on a split-and-merge of pairs of boundary 

elements that touch each other, without being properly connected. Specifically, once the whole 
parameter domain has been covered, we pick a boundary vertex v and check if it is too close (i.e. 
the distance is less than half the desired edge length) to a boundary edge e whose vertices are 
both different from v. If such an edge exists, we split it by v, and exploit adjacencies to zip the 
boundary performing edge splits where needed, as shown in Fig. 8, until the vertex-edge 
distance exceeds half the threshold distance. If e does not exist for the chosen vertex, we 
perform the test on another one, until all the boundary vertices have been checked. 

 



 
1 2 3 4

 
FIG. 8. Joining two parts of the boundary. The gap has been enhanced to show the lacking topological connection. 

 
Our algorithm can tessellate every regularly parameterized C1 2-manifold and, by this 

simple extension, the resulting mesh also reflects possible closures of the input surface through 
a coherent connectivity graph. Moreover, since we compute distances in the Euclidean 3D 
space, the same procedure can be used to join several parametric patches that were triangulated 
using the same sampling step. In Fig. 9 the triangulation of a torus is shown as it has been 
computed by our implementation of the algorithm. 
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FIG. 9. Triangulation of a torus with corrected connectivity. 

 
 

9. ADAPTIVITY 
 

The method described so far can tessellate a surface in an almost uniform manner and 
whatever its parameterization. If a more precise mesh is necessary, we have developed a scheme 
to refine the initial coarse triangulation iteratively. The user chooses the expected edge-length, 
representing the dimension of the smallest feature that must be detected, then he sets the 
maximum acceptable distance, ε, of an edge from the surface. Once the initial mesh has been 
constructed, each edge is split at its farthest point from the surface if this point is farther than ε. 
In Fig. 10 the triangulation of a volcano shape is shown [26]; the initial mesh is shown on the 
left. No adaptation has been used and the number of triangles, nt, is 354. The other three are 
adaptive meshes obtained by refining the first one with different tolerances. Notice how the 
density and shape of the triangles follow the curvature and its principal directions. This 
stretching can be seen even better in Fig. 11; here the triangles are elongated in the direction of 
the cylinder axis. All the depicted triangulations were computed through our prototype. 

Let us suppose that the user requires a short sampling step because, for example, some 
small features must be captured. In this case, if the surface has large and flat regions, a 
significant number of redundant triangles is used to tessellate such regions. This may happen 
even if the adaptive scheme described above is used. Thus, we further extend our method by the 
means of a mesh simplification procedure driven by the underlying parametric surface. In 
particular, we iteratively perform edge-contractions as described in [27] and stop when any 
further contraction would produce a distance edge-surface bigger than ε. The application of the 



refinement followed by the simplification makes our method able to produce anisotropic meshes 
that are particularly suitable for fast rendering (Fig. 11c).  
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FIG. 10. Adaptive triangulation of a volcano with different tolerances. 

 
 (b) (c)(a) 

 
FIG. 11. Uniform triangulation of a cylinder (a), after the refinement (b) and after the simplification (c). Triangles are 

stretched along the direction of the axis.  

 
10. CONCLUSION 

 
In this paper we presented a method for overcoming the limits of existing algorithms for the 

polygonization of parametric surfaces. The normal umbrella allows us to build a triangulation 
depending only on the surface’s intrinsic characteristics, avoiding the problems of bad 
parameterization. The algorithm works on all regularly parameterized surfaces of class C1, 
provided that the surface is a 2-manifold. The method for sewing-up the boundary of closed 
surfaces can be used to join several parametric patches, as usual in CAD applications. The 
output meshes are rather uniform, so that they are suitable for applications of the FEM or other 
kinds of numerical simulation. If the initial triangulation is fine enough, the adaptation criterion 
used allows the construction of bounded error meshes. Moreover, the simplification described 
makes us able to create anisotropic triangulations for applications requiring fast rendering. 
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