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1 Abstract 

Due to recent technological advances, 3D geometry is 
becoming commonplace on all the entry-level PCs 
connected to the Internet, and multimedia-enabled systems 
must be prepared to a great increase of complex 3D 
content in the future. However, while Computer Graphics 
research has solved many problems related to the creation 
and manipulation of digital 3D shapes, work on how to 
extract, store and handle semantic content about 3D 
models is still at the beginning. Undoubtedly,  the 
development of tools for the management of knowledge 
related to 3D shapes is fundamental to foster the 
development of totally new approaches to 3D content 
creation, retrieval and usage. In this paper we describe 
AIM@SHAPE’s view of the digital shape lifecycle, and 
explain novel approaches to tackle the semantic 
annotation of 3D shapes. 
 
2 Introduction 

In the last decade, the concept of multimedia has 
evolved from single-content type, mainly related to non-
textual data (e.g., images, videos or audio), to truly 
multimedia content, which integrates multiple medium 
types. Research on multimedia, however, is largely 
devoted to content whose digital representation is at most 
two-dimensional (e.g., images), possibly with the addition 
of time and audio (e.g., videos). At the same time, 
Computer Graphics has reached quite a mature stage 
where fundamental problems related to the modelling, 
manipulation and visualization of static and dynamic 3D 
shapes are well understood and solved. Considering that 
most PCs connected to the Internet are now equipped with 
high-performance 3D graphics hardware, it seems clear 
that in the near future 3D data will represent a huge 
amount of traffic and data stored and transmitted using 
Internet technologies. It has been predicted that geometry 
is poised to become the fourth wave of digital-multimedia 
communication, where the first three waves were sounds 
in the 70's, images in the 80's, and videos in the 90's.  

 
There is a phenomenal activity around digital shapes. 

Currently in widespread use for computer-aided design 
and manufacture, they are becoming crucial to genomic, 
proteomic and medical modelling. In areas like culture, 
education and entertainment, shapes are equally essential 
in developing convincing virtual worlds. They are used 
extensively to develop models and create simulations, and 
to devise new designs that conform to engineering 
constraints, yet remaining functional and aesthetically 

pleasing. In personal entertainment, it is possible already 
today to buy your own 3D character for some computer 
games.  

 
If most of the efforts in multimedia are currently 

focused on solving problems related to image-oriented 
content, the next step is to add a new dimension, i.e. 3D or 
time varying 3D, to this content and endow it with 
semantics. The impact of 3D content is comparable to the 
one of images, with a number of distinctive properties. 3D 
shapes offer more potential for interactivity since they can 
be observed and manipulated from different viewpoints. 
Also, the richness of their representation potentially 
contains more knowledge about an object than a simple 
picture. At the same time, representing a complex shape is 
known to be highly non trivial, due to the sheer mass of 
information involved and the complexity of the 
knowledge a shape can reveal. Therefore, we need tools 
for making digital shapes machine-understandable and not 
just human-understandable as today, developing semantic 
mark-up of content, intelligent agents and ontology 
infrastructures for fully-3D content. 

 
The description of a shape is intrinsically not unique 

and varies according both to the application and user  
contexts. Therefore, the abstraction levels used to process 
or reason about 3D media should correspond to the mental 
models used to answer questions such as “what does it 
look like?”, “what is its function?”, thus making it 
possible to model, manipulate and compare the various 3D 
shapes in a semantics-oriented framework.  

 
According to our experience, applications dealing with 

3D shapes need a description of the media content and 
semantics in terms of knowledge related at least to the 
following types, or forms:  

 
• knowledge related to the geometry of 3D shapes: 

while the descriptions of a digital 3D media can 
vary according to the contexts, the geometry of 
the object remains the same and it is captured by a 
set of geometric and topological data that define 
the digital shape;  

 
• knowledge related to the application domain in 

which 3D shapes are manipulated: the application 
domain casts its rules on the way the 3D shape 
should be represented, processed, and interpreted; 
features are the key entities to describe the media 
content, and these are obviously dependent on the 



domain. Beside the description of the shapes 
content, a big role is played by knowledge of the 
domain experts which is used to manipulate the 
digital model: for example, the correct manner to 
compute a finite element mesh of a 3D object 
represented by free-form surfaces is subject also 
to informal rules that should be captured in a 
knowledge formalisation framework;  

 
• knowledge related to the meaning of the object 

represented by the 3D shapes: they may represent 
objects that belong to a category of shapes, either 
in broad unrestricted domains (e.g. chair, table in 
the house furniture) or narrow specific domains 
(e.g. T-slots, pockets in mechanical engineering).  

 
The first bullet is concerned with knowledge, which 

has geometry as its background domain. 3D geometry, as 
used in applications, has to do with a much richer variety 
of methods and models, and for example in the product 
modelling scenario, users might have to deal with 
different representation schemes for the same product 
within the same modelling pipeline. 

  
The second bullet refers to knowledge pertaining to the 

specific application domain, but it has to be linked to the 
geometric content of the 3D shapes. Therefore, if we want 
to devise semantic 3D systems, with some reasoning 
capabilities, we have to formalise also expert knowledge 
owned by the professionals of the field.  

 
Finally, the third bullet has to do with knowledge 

related to the existence of categories of shapes; as such, it 
is related both to generic and specific domains. Usually in 
3D applications, it is neither necessary nor feasible to 
formalise the rules that precisely define these categories in 
terms of geometric properties of the shape, besides very 
simple cases. However, due to the potential impact of 
methods for search and retrieval of digital 3D models, 
there is a growing interest in methods that can be used to 
derive feature vectors or more structured descriptors that 
could be used to automatically classify 3D shapes. 

 
3 The AIM@SHAPE Vision and 

Mission 
 

In this context, the FP6-IST Network of Excellence 
AIM@SHAPE [1] is pursuing the introduction of 
knowledge management techniques in shape modelling, 
with the aim of making explicit and sharable the 
knowledge embedded in multi-dimensional media, with 
focus on 3D content. On the one hand, this requires the 
development of tools able to extract semantics from 3D 
models (e.g. automatic or semi-automatic annotation 
tools), on the other hand it is necessary to build a common 
framework for reasoning, searching and interacting with 
the semantic content related to the knowledge domain. 
One of the objectives of AIM@SHAPE is therefore to 
develop new methods and tools for modelling, extracting 
and reasoning about knowledge related to digital 3D 
content, where knowledge is concerned with geometry 

(the spatial extent of objects), structure (object features 
and part-whole decomposition), attributes (colours, 
textures, names attached to an object, its parts and/or its 
features), semantics (meaning or purpose in a specific 
context), and has interaction with time (e.g., shape 
morphing, animation, videos).  

 
An example of semantics-based shape modelling is 

illustrated in Figure 1, where a bottom-up pipeline for 
modelling a virtual human is shown. The modelling 
process starts with the scanning of a real body model (a), 
and the acquired data are used to build a first digital model 
of the real shape (b). The geometry of the body is 
represented in this case by a triangle mesh, which contains 
all data needed to render nicely the digital object. In the 
triangle mesh, however, nothing is stored about the 
semantics of the objects or of its features: it is not possible 
to distinguish points belonging to the legs from points 
belonging to the hands. With suitable shape analysis 
methods, it is possible to detect relevant parts of the 
digital model, having a protrusion-like form (c); based on 
this analysis the initial geometry is segmented and the 
triangles are organized in a skeleton-like structure of the 
body model (d). Finally, another step of analysis is used, 
which makes use of context-specific rules, to tag parts of 
the structure with semantically-oriented labels, such as 
legs, arms and so on. The tagged model is now ready for 
being animated properly in a virtual environment scenario 
(e). 
 

The shift from a purely geometric to a semantic-aware 
level of 3D content production and storage requires 
fundamental research to be done within an underlying 
common conceptualisation framework, which formalizes 
shape knowledge via the adoption of shared metadata and 
ontologies. In AIM@SHAPE, ontologies are structured 
frameworks of concepts, meanings and relations which 
make explicit the knowledge associated with shapes (for 
example, see Figure 2). They predefine semantics that can 
be used to annotate shapes with domain-specific 
information.  

 
4 A new proposal for part-based 

annotation of 3D shapes 
 
Annotating shapes amounts to formally coding 

additional knowledge in the form of structured attributes, 
or metadata, and is a crucial ingredient for the 
development of effective search mechanisms. Within 
future knowledge bases of annotated 3d media, one could 
be able to answer queries of the type “find a shape 
containing two arms and two legs”, or even to ask “find 
legs” and obtain as results proper subparts of whole 
shapes.  In principle, an expert in a particular domain 
should be able to identify significant features and to assign 
them a specific meaning. As an example, an engineer 
should be able to look at a surface mesh representing a 
scanned engine and identify which parts have a specific 
mechanical functionality. 

 



 

        (a)                      (b)                      (c)                      (d)                                  (e)  
Figure 1: The bottom-up digital shape lifecycle applied to virtual humans. 

 
  

  

 
Figure 2: General scheme of the Virtual Human Ontology 

 
Unfortunately, to the best of our knowledge, today 

there is no practical way to transform such expertise into 
usable content to be coupled with the plain geometric 
information. To bridge this gap, we defined an annotation 
pipeline and developed a prototype graphical tool called 
the ShapeAnnotator. This tool has been specifically 
designed to assist an expert user in the task of annotating a 
surface mesh with semantics belonging to a domain of 
expertise. 
 

Broadly speaking, expressing the semantics of 3D 
shapes requires the identification of significant parts, or 
features, the specification of the domain of expertise using 
some kind of formalism, and the storage of the geometry 
plus its semantic description in a way that could be 
accessed easily, by humans as well as by software agents. 

 
Clearly, the optimal solution would be the automatic 

annotation of 3D shapes, but this is generally unfeasible 
due the intrinsic difficulty of devising a system that 

automatically extracts all the relevant features of an 
object. In the area of shape segmentation, indeed, some 
significant results have already been obtained [2], but the 
problem is still open and remains of alive interest. In 
contrast, to the best of our knowledge, very few work has 
been done to automatically annotate shapes, and only for 
very specialized tasks [3][4]. In section 6 a method to 
automatically segment human body shapes is described. 

 
 

5 The ShapeAnnotator 
 
The paradigm behind the ShapeAnnotator is based on 

the twofold assumption that an effective annotation must 
be relative to a specific domain, and the definition of 
relevant shape feature must be relative to the same 
domain. 

 
Thus, the input of the ShapeAnnotator is constituted of 

(1) the shape to be annotated, (2) an ontology representing 



the annotation domain, and (3) an optional set of shape 
segmentation plug-ins to extract specific, domain-
dependent features. Plug-ins are optional because the 
ShapeAnnotator already includes several standard 
segmentation algorithms whose results can be composed 
and edited within a multi-segmentation to define non-
trivial features. In many cases, in fact, shape features are 
not sharply defined in terms of their boundary; if the 
annotation domain describes a head and a torso to be 
adjacent parts of a human body, for example, the neck 
should be considered part of both. In general, features may 
overlap and they do not necessarily form a partitioning of 
the whole (i.e. some parts may remain undefined as they 
do not have any particular meaning in the context 
addressed). 

 
Note that for 2D images, segmentation algorithms are 

not always considered helpful to define features for 
annotation; on a flat image, in fact, useful features may be 
even sketched by hand [5]. In contrast, a 3D shape may be 
very complex and drawing the boundary of a feature 
might become a rather tedious task, involving not only the 
drawing stage, but also rotating the scene, translating and 
zooming in and out to show the portions of the surface to 
draw on. 

 
Once segmentation algorithms have been run to 

properly define interesting features, the next step consists 
of selecting each such feature and tagging it with a 
concept of the ontology. To this aim, the ShapeAnnotator 
provides an integrated ontology browser to seek and select 
the proper concept by navigating across ontological 
relations, and to create an instance for the resulting 
knowledge base. 

 
The output of the annotation process is a pair of files 

that encode: 
- The geometry of the shape and its interesting 

features; 
- The set of instances describing the features. 

The domain ontology coupled with the instances form 
a knowledge base in which the semantics is connected to 
the geometry (see  Figure 3). 

 
 

6 Automatic annotation of human body 
models 

 
As mentioned in section 4, at present automatic 

semantic annotation is not reachable in the general case, 
while it is possible in a few specific domains. In the 
following, we are going to describe an algorithm to 
automatically annotate parts of human body models and 
show the results on real scan data. 

 
Basic components of articulated shapes such as human 

body models are best identified by tubular and non-tubular 
features. In fact, while geometric attributes may vary from 
a model to another, the human body structure is well 
defined and the basic components are predominantly 
tubular (e.g., arms, legs, fingers, neck). A segmentation 

into tubular/ non-tubular parts may be expressive enough 
to allow an automatic annotation of components with 
semantic content, at least in well specified knowledge 
domains like that of human body models. 

 
Figure 3: Bridging geometry and semantics. The file 

girl.owl encodes instances of concepts formalized in 
Human_bodies.owl and, at the same time, points to the 
corresponding geometry in girl.ply. 
 

Therefore, we implemented an automatic semantic 
annotator for human body parts based on the segmentation 
given by an algorithm called Plumber [6]. Plumber 
segments a mesh into tubes and blobs (non-tubular 
features). For each features some geometric attributes are 
also computed, such as blobs’ volume and tubes’ axis 
length and section size. 

 
The annotation can be defined as a function f : S → L 

from the set of segments S into the set of labels L. In our 
case, the segments are those given by Plumber; labels are 
defined in order to make the annotation exhaustive with 
respect to the segmentation, therefore: 
 
L := trunk, arm, hand, palm, finger, fingertip, leg, foot, 

neck, head. 
 

         In general, some of the labels in S might not appear 
in the annotation because they have not been identified by 
the segmentation due to the posture, the poor quality of 
the scans, or the selection of level of details which do not 
enable to characterize small features such as fingers. In 
this last case, the hand segment will be labelled as hand, 
discarding the palm, fingers, and fingertip labels. 
Conversely, fingers, fingertips, and palm will be 
instantiated at the expense of hand, unless we deduce 
afterwards that adjacent regions labelled as palm, finger, 
and fingertip form a hand. The annotator exploits the 
geometric attributes of parts, computed during the 
segmentation phase. For tubes these are the axis length 
and the maximum, minimum and average length of cross 
sections, while for blobs the volume is considered. We 
point out that a tube segment has always two adjacent 
segments, while a blob segment may be adjacent to one or 
more parts; in particular, we will call cap a blob segment 
adjacent to one segment exactly. Given a segmented 



shape, we define as shape-graph the graph whose nodes 
are the identified patches and the arcs code the adjacency 
among them. The a-priory knowledge on human anatomy 
is exploited to define annotation rules of parts, based on 
geometric attributes and mutual adjacency relations of 
segments. The annotation rules come from the following 
considerations and imply a sequence of applications: 

- the trunk is the blob segment of maximum volume1; 

- if the trunk is adjacent to four tubes, those are legs and 
arms; if it is adjacent to five tubes, also the neck has 
been segmented; 

- if the neck has been segmented, it is the tube adjacent 
to the trunk, also adjacent to a cap, having minimum 
length; the head is the cap adjacent to the neck; 

- among the four tubes adjacent to the trunk, not yet 
labelled (i.e. except the neck, if segmented) arms are 
those having maximum length, maximum section 
(greater value of maximum section length) and 
adjacent to a cap, that will be labelled as foot. 

- the two tubes adjacent to the trunk still unlabeled will 
be annotated as arms; 

- if a cap is adjacent to an arm, it will be labelled as 
hand; otherwise, the body segment adjacent to an arm 
(beyond the trunk) will be annotated as palm, and its 
adjacent tubes as fingers.  

- Finally, caps adjacent to fingers will be annotated as 
fingertips. 

 

 
Figure 4: automatic annotation of a human body scan. 

Selecting a point on a segment makes the corresponding 
label (“arm” in the example) to be printed on the screen. 

 
Once the model is annotated, a mouse click over a 

segment will cause the corresponding label to be printed 
on the screen. In Figure 4, the graphical user interface of 

the whole work-flow (morphological analysis, 
segmentation, and annotation) is shown, side by side with 
the command shell where the main computation steps are 
reported by the program; also, the output of some queries 
on segment labelling by the user are displayed.  

                                                           
1 This statement always holds: if the model is undersegmented, the trunk 
segment will have the maximum volume, at the expense of the arms, 
legs, and neck. 
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