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Abstract 
In this paper an algorithm is proposed that takes as input a generic set of unorganized points, sampled on a real 
object, and returns a closed interpolating surface. Specifically, this method generates a closed 2-manifold surface 
made of triangular faces, without limitations on the shape or genus of the original solid. The reconstruction method is 
based on generation of the Delaunay tetrahedralization of the point set, followed by a sculpturing process constrained 
to particular criteria. The main applications of this tool are in medical analysis and in reverse engineering areas. It is 
possible, for example, to reconstruct anatomical parts starting from surveys based on TACs or magnetic resonance. 

 
 

1. Introduction 

Automatic techniques for surface reconstruction play an 
extremely important role in a variety of applications, such as 
computer vision or reverse engineering. The main 
difficulties involved are caused by the use of automatic 
digitizing systems, such as laser-range scanners or digitizing 
machines, that generate a set of points belonging to the 
object surface. Digitizing machines usually perform the 
sampling along predefined directions, sections or profiles, 
which induce at least a partial order in the data set. 
Conversely, laser scanning techniques produce data sets 
without any particular spatial organization among points.  

The methods developed have mainly been defined in a 
case by case manner in order to exploit the partial structure 
of the data. The use of shape-based reasoning techniques is 
especially efficient in this context since several structural 
features of the underlying surface may be easily detected by 
analyzing the geometric configuration of points along the 
sampling directions. The reconstruction may therefore be 
made a posteriori with respect to the recognition of a rough 
shape skeleton, which has the twofold advantage of guiding 
the reconstruction itself and allowing the insertion of shape 
constraints in the surface model 1,2,3. 

Methods developed for unorganized points, that is, data 
sets without any specific spatial distribution, are generally 
based on the construction of neighboring relationships 
among points and on local piece-wise approach to surface 
fitting. Obviously, reconstruction processes may result in 
different surface models, such as triangulation 4,5,6,7 , B-
spline patches 8,9, or implicit surface description 10. 

The design of an algorithm for the reconstruction of 
surfaces is not a simple problem. Some methods have been 
proposed in the scientific literature, but almost all of them 
are restricted in terms  of applicability spectrum: 

• Some algorithms compute an approximation of the 
original surface by generating a new, denser set of 

points. This kind of approach is often used in those 
cases where an already very dense starting point set is 
available. The disadvantage lies in the necessity of a 
further step for surface generation, a process that often 
involves the computation of huge quantities of 
information. 

• Generally, the reconstruction of particularly sharp 
edges and high curvature areas poses great difficulties 
for most algorithms. 

• Sometimes the set of points must respect conditions 
like uniform density if the algorithm is to reconstruct 
the surface correctly 5,10. 

• The topology of the objects that can be reconstructed 
often limits the applicability of the algorithm. For 
example, many algorithms can only reconstruct objects 
without holes 5,6,11. 

• Some algorithms depend on a global parameter, which 
often calls on the user to make repeated adjustments in 
order to obtain a good result 12. 

• Many surface reconstruction algorithms are limited in 
usage because  they require excessively high 
computation times 7,13. 

The solution presented in this paper generates a closed two-
manifold surface made of triangular faces, without 
limitations on the shape or genus of the original solid. The 
proposed method is based on constrained sculpturing of the 
Delaunay tetrahedralization of the data points. It makes use 
of two geometric structures, the Euclidean minimum 
spanning tree and the Gabriel graph 6, to transform the 
Delaunay tetrahedralization of the object in its boundary 
surface triangulation. 

The reminder of the paper is organized as follows. First, 
the problem of surface reconstruction is posed in formal 
terms, and basic notions as well as relevant previous work 
are described. Then the proposed method is described in 
detail, and some implementation issues are discussed. 
Examples and execution times are also presented. Finally, 
some conclusions are drawn and future developments are 
described. 



 

 

2. Problem statement and previous work 

From a mathematical point of view, a surface in the 
Euclidean three-dimensional space R3 is defined as a two-
dimensional manifold that is compact, connected and 
orientable. In other words, we might say that a surface is a 
“continuous” subset of points in R3 which is locally two-
dimensional. A surface may have a border, when the 
boundary is not empty, or it may be closed, when the 
boundary is empty. The problem of surface reconstruction 
can therefore be formalized as follows: given a set of points 
S ={ Pi=(xi,yi,zi)  / (xi,yi,zi) ∈ M ⊂ R3 , i=1…k, M surface 

in R3} find a surface M’ which interpolates or approximates 
M, using the data set S and information on the sampling 
process of M.  

Obviously, the reliability of the reconstructed surface 
depends on the amount of information available about the 
surface, whatever method is used to perform the 
reconstruction. In other words, no algorithm can accurately 
reconstruct a sub-sampled surface. To understand why this 
is actually not a limitation but a necessary condition, let us 
consider the problem of mono-dimensional signal 
reconstruction, for example sound waves. In this case, the 
Shannon sampling theorem proves that it is not possible to 
reconstruct a band-limited signal if its sampling frequency is 
below a fixed threshold value. In a similar way, it is not 
possible to reconstruct a surface accurately if its sampling 
point set is insufficiently dense. While the sampling theorem 
is intended for uniformly sampled signals, surface sampling 
may have different spatial distributions. In this sense, the 
formal framework proposed by Hoppe 13 et al. provides a 
good formalization of the requirements needed for point 
density: given a surface M, its sampling SM={ Pi=(xi,yi,zi,)  
/  i=1…k} is said to be ρ-dense if every sphere with radius ρ 
and center on M contains at least one point of SM. Hence, it 
makes no sense to attempt reconstruction of surface shape 
features whose “dimension” is less than the sampling 
density associated to SM. This statement simply reflects 
Shannon’s sampling theorem applied to surfaces. 

Therefore, making no assumptions about the spatial 
distribution of the data points, we may say that the 
information contained in SM is represented solely by the 
point position in space. The approaches used to solve this 
problem can be divided into two main classes: interpolation 
and approximation methods. Using the interpolation 
strategy, the reconstructed surface will preserve the original 
data set, that is, the measured points will also belong to the 
reconstructed surface. Interpolation methods can be further 
classified as global or local according to the degree to 
which each point is considered to influence the 
reconstruction of the surface at distant locations: in global 
methods, all points are used to define the interpolant, while 
in local methods only nearby points are used to compute a 
“piece” (or patch) of the whole surface. Global methods are 
rarely used, as the large volume of data involved generally 

causes high computational complexity. Piece-wise fitting, 
instead, is a much more flexible procedure. 

The work presented in this paper approaches the 
reconstruction problem using a local  strategy for defining a 
triangular mesh which interpolates the vertices of SM. The 
basic idea is to take into account the juxtaposition of points 
in space; more precisely, it is considered preferable to 
connect two points in the final mesh with an edge if they are 
spatially close.  

The concept of point neighborhood has been widely 
studied in the field of computational geometry, and efficient 
algorithms exist that compute solutions to a number of 
known problems 14 (closest points, all nearest neighbors, 
Euclidean minimum spanning tree, etc). The solutions to 
these problems can be efficiently represented by graphs in 
which pairs of points are linked by an edge if and only if the 
pair respect the problem condition. Some of these graphs 
have properties which are useful for surface reconstruction. 
In particular, the Euclidean minimum spanning tree has 
been used by several authors as a first step in the 
reconstruction process 7,13. 

For the sake of clarity, let us describe some of these basic 
geometric structures by giving the following definitions 6, 
where P={Pi=(xi,yi,zi) / Pi ∈ R3} denotes the set of data 
points, and the metric used is the classical Euclidean 
distance in R3. 

• Nearest neighbour graph, NNG 
The nearest neighbor graph of P is the maximal graph 
NNG(P)=(P,E) such that E ⊆ P×P and E={ ek=(Pi,Pj) 
k=1,…n  / Pj is the point of P closest to Pi } 
 

• Euclidean minimum spanning tree, EMST 
The Euclidean minimum spanning tree P is the maximal 
tree EMST(P)=(P,E) such that E ⊆ P×P and 
E={ek=(Pi,Pj) k=1,…n  / ∑ l(ek) is minimum, where l(ek) 
= | Pi-Pj | } 
 

• Gabriel graph 
The Gabriel graph of P is the maximal graph 
GG(P)=(P,E) defined by E ⊆ P×P and E={ ek= (Pi,Pj) 
k=1,…n  / the smallest sphere for Pi and Pj does not 
contain any other point of P } 
 

• Delaunay tetrahedralization, DT 
The Delaunay tetrahedralization of P, DT(P) is the 
maximal set of tetrahedra T⊆P4,T={ tk=(Pk1,Pk2,Pk3,Pk4) 
k=1,…n } such that: 
9 ∀ Pi ∈ P, Pj is a vertex of some tk ∈ T; 
9 ∀ tk , tn ∈ T, either their intersection is empty or 

they intersect at a common face, edge or vertex; 
9 ∀ tk ∈ T, the sphere circumscribing tk does not 

contain any other point of P. 



 

 

We note that the boundary faces of DT(P) interpolate a 
subset of the data points and therefore define an initial step 
for the solution to the surface reconstruction problem. 
Moreover, if we denote with EDT(P) the set of edges of 
DT(P), the following inclusion relation holds: 

NNG(P)⊆ EMST(P)⊆ GG(P)⊆ EDT(P) 

More precisely, the previous relation is true only if the 
related graphs are unique for a given data set P but, for 
simplicity’s sake, this point will not be discussed here. 

Several methods use the DT(P) structure as initial 
approximation of the surface shape and iteratively remove 
inner tetrahedra and portions of the DT(P) which are judged 
to be external to the real object surface. This process, called 
sculpturing, was introduced in 1984 by Boissonat 5. It 
consists of an iterative removal of some tetrahedra from the 
DT until all the vertices lie on the boundary. One very 
interesting characteristic of this approach is the possibility 
to maintain a coherent data structure at each stepI. 
Moreover, by some simple reasoning, it is possible to 
implement very efficient sculpturing algorithms, O(tlogt), 
where t is the number of tetrahedra of the starting DT. 

It is not difficult to fix some simple rules that each 
sculpturing algorithm must respect: 

� Removal of a tetrahedron with 3 boundary triangles can 
irreversibly disconnect a vertex from the current 
boundary, therefore removal of such a tetrahedron is 
never allowed. 

� A tetrahedron with exactly two faces on the boundary 
with a common edge e can be removed only if the edge 
opposed to e is not already on the boundary. 

� A tetrahedron with only one face on the boundary can 
be removed only if the vertex opposed to that face is not 
already on the boundary. 

The order in which tetrahedra are removed influences the 
final result, therefore it is necessary to determine a 
convenient sorting criterion. A number of different methods 
have been proposed in this regard. For example, Boissonnat 
uses a criterion based on the minimum change of the surface 
area, while O’Rourke 15 uses a mathematical tool, the 
Voronoi Skeleton, as a sorting criterion. Veltkamp 6,11 
defines for each tetrahedron a value called γ-indicator; 
tetrahedra are eliminated by growing order of this 
parameter. 

Unfortunately, each of the aforementioned methods has 
its limitations, such as the need for user interaction, the 
impossibility to reconstruct solids with holes, the creation of 
unaesthetic surfaces, excessive complexity, and so on. 

                                                           
I At each step the boundary is a 2-manifold 

The sculpturing method proposed in this paper integrates 
the standard rules for getting a 2-manifold surface with 
additional constraints. These constraints are a combination 
of two different criteria whose advantages are coupled, 
eliminating the need for user-interaction to locally adjust the 
resulting surface. The constraints used for the sculpturing 
process are defined by the EMST and an Extended Gabriel 
hypergraph, which is defined in the next section. 

Some authors take into account only a part of the 
constraints proposed here. For example, Mencl and Müller 7 
developed a reconstruction method that, starting from the 
EMST, extends this graph to a so-called surface description 
graph using assumptions on the position and shape of 
edges. This algorithm, moreover, determines some shape 
characteristics before the surface is completely 
reconstructed and uses these as a support for completing the 
process. Unfortunately, the algorithm requires considerable 
computation time, in the order of hours for a few tens of 
thousands of points, and even though several assumptions 
are made, a good result cannot be guaranteed.  

Another work relevant to our method is the sculpturing 
proposed by Veltkamp 6,11 , which starts from DT(P) and 
sculptures tetrahedra away in a very efficient fashion. This 
method generates a 2-manifold surface interpolating all 
vertices, but may produce unaesthetic surfaces with long, 
thin tetrahedra. This problem is caused by the removal 
criteria used for tetrahedra, which is based on the concept of 
γ-indicator. Moreover, the reconstructed surface always has 
genus 0, therefore objects with through holes cannot be 
accurately reconstructed. 

3. The proposed algorithm 

The proposed method stems from analysis of the criteria 
used by various authors, and can be seen as a hybrid 
approach based on sculpturing and on the use of some 
interesting properties of geometric graphs, as defined in the 
previous section. The EMST is used as a constraint during 
the sculpturing of the Delaunay tetrahedralization of the 
data set, and in addition another constraint is used, the so-
called Extended Gabriel Hypergraph (EGH). Roughly 
speaking, given P as the initial point set, the algorithm starts 
with the generation of DT(P); then, tetrahedra are iteratively 
removed from DT(P), until all vertices lie on the boundary. 
The removal process is constrained to the EMST(P) and to 
the EGH(P), as explained in the following. The boundary of 
DT(P), simplified as previously described, defines the 
reconstructed surface. 

Many authors use the EMST as a constraining or starting 
graph for surface reconstruction because its definition 
guarantees that the resulting edges are the shortest possible. 
Therefore, close points in the data set are likely to be linked 
in the graph, which is an important starting point for 
pursuing our aim. Moreover, since the EMST has a tree 
structure, there is always a path between the two vertices of 



the graph. The Gabriel graph has not been widely used for 
surface reconstruction and is mainly considered as a self-
standing entity. However, this graph gives a kind of 
indication about the best interconnection of points when 
used for the reconstruction of the boundary of a 2D data set 
6,11. 

3.1. Extended Gabriel Hypergraph 

The concept of extended Gabriel hypergraph has been 
introduced to locate, inside the Delaunay tetrahedralization, 
those triangles that have a high probability of being close to 
the original surface. 

Given P, and given the associated GG(P)=(P, EGG), the 
EGH(P) is defined as EGH(P)=(P,EEGH,T) such that EEGH, 
the edge set, is initially defined by EGG while T, the triangle 
set, is initially empty. The final sets are constructively 
defined as follows: 

9 ∀ e1 , e2 ∈ EGG , e1 =(v1, v2) and e2=(v2, v3), if v1, v2 and 
v3 are not aligned and if the smallest sphere for v1, v2 and 
v3 does not contain any other points of P, then EEGH= 
EEGH∪{(v1, v3)} 

9 any cycle of three edges in EEGH defines a new triangle 
in T. 

 

Theorem: If the Delaunay tetrahedralization DT(P) is 
unique, then all the triangles of the Extended Gabriel 
Hypergraph are triangles of the DT(P). 

 EGH(P) ⊆ DT(P) 

Proof 

Each triangle of EGH(P) satisfies one of the following two 
conditions: 

1. It is made of three edges of GG(P). 
2. The smallest ball touching its vertices does not contain 

other points of P. 

In the first case, it is enough to consider the inclusion 
GG(P) ⊆ DT(P) to assert that the triangle is in the DT. 

In the second case, let’s consider that if an empty ball 
touching the three vertices of the triangle exists, it can be 
enlarged, maintaining the condition that it touches the above 
three vertices and is empty, until it reaches the closest fourth 
vertex of P. In this way we have determined a tetrahedron T 
whose four vertices define an empty ball, T belongs to the 
DT(P) and the analyzed triangle is a face of T, in other 
words it is a triangle of the DT(P). 

⊗ 

The above theorem already represents a first important 
characteristic of the EGH, the inclusion in the Delaunay 
tetrahedralization. 

Figure 1: Example of the boundary of a point set in 2D and 
corresponding Delaunay triangulation. In the DT the Gabriel 
graph edges are highlighted. 

The above figure shows how, in 2D, the Gabriel graph gives 
a rough approximation of the boundary to be reconstructed. 
The graphical representation of the three-dimensional case 
is shown in the following figure. 

 

Figure 2: A set made of 1079 points sampled  from a head of 
Venus, its reconstruction and the Extended Gabriel Hypergraph. 

 

3.2. Constrained sculpturing 

Insertion of constraints in a sculpturing algorithm requires a 
degree of caution. First of all it is necessary to define the 
basic structure of the algorithm: 

1. Construction of the Delaunay tetrahedralization 
2. Construction of a heap containing removable 

tetrahedra sorted with a criterion 



 

3. While ( ∃ one vertex not lying on the boundary and 
the heap is not empty) { 

4.   T = root(heap); remove T from heap 
5.   if (T is removable) { 
6.    remove T from DT 
7.    insert each new removable tetrahedron into the 

heap 
 } 
} 

Chosing the heap for storing tetrahedra is justified by the 
quick insertion and removal of an element in this structure ( 
O(logn), n = number of stored elements). Although at the 
beginning the heap only contains removable tetrahedra, the 
test (5) is necessary because as a result of previous removals 
a tetrahedron may become irremovable. 

Constraints come into play in the definition of removable 
tetrahedron: T is classified removable if and only if all the 
following rules are respected: 

� basic sculpturing rules (see Section 2) 
� if T has the only face t on the boundary, t must not 

belong to EGH. 
� if T has two faces on the boundary, these must not 

belong to EGH, moreover the common edge of the two 
faces must not belong to the EMST. 

In such a way, the sculpturing proceeds without removing 
those elements that, according to EGH and EMST 
properties, have a high probability of belonging to the 
surface. It is possible that the constraint given by the EGH 
will prevent some vertices reaching the boundary; in this 
case, at the end of the while cycle, the heap is refilled with 
removable tetrahedra not constrained to the EGH. The 
above disadvantage is caused by a characteristic behavior of 
the EGH in the presence of badly sampled vertices (see Fig. 
3). 

 

Figure 3: Typical example of a vertex hidden by the EGH. It is 
likely that such vertices are originated by errors of the digitizing 
tool or by insufficient sampling. 

The criterion used for sorting tetrahedra into the heap 
may be any of those explained in the previous section. An 
additional criterion that is experimentally sound is the 
following: 

Tetrahedra that have the longest edge on the boundary have 
to be removed first. 

This kind of sorting is based on the observation that in the 
reconstruction of a well sampled object, the linkage of two 

very distant vertices is less probable than that of two very 
close vertices. 

Until this point the algorithm is able to reconstruct 
surfaces of genus 0 (solids without holes). To extend the 
capabilities of the algorithm it is necessary to use a 
mathematical tool that locates the presence of a hole. Once 
again the EMST proves to be the best choice; to this end, 
the following algorithm can be considered, in which the 
removable condition is to be intended as not constrained: 

1. Consider all the removable tetrahedra whose 
removal adds one edge of the EMST to the 
boundary. 

2. Remove such tetrahedra. 
3. If there exists an edge e of the EMST that is not on 

the boundary and it is possible to create a hole, 
create a hole according to e, start again with 
constrained sculpturing and, at the end, go to 1. 

Let us consider a tetrahedralization with 2-manifold 
boundary. A simple analysis shows that the simplest solid 
which, if removed, produces a hole is a pseudo-prism with 
triangular bases consisting of 3 tetrahedra (see Figure 4). 

Coastal edge (internal)
Base (on the boundary)

Coastal triangle (internal)

EMST edge
(internal)

 

 Figure 4: Pseudo-prism made of 3 tetrahedra removed from a 
torus to create the hole. 

The simplest way to create a hole, therefore, is to remove 
a pseudo-prism whose bases, and only those, belong to the 
boundary. The criterion that determines whether and how to 
create a hole according to an edge e is the following: 

Create a hole, if possible, according to e 

1. e ∉ boundary 
2. Determine pseudo-prisms such that: 

� e is a coastal edge; 
� the six coastal triangles don’t belong to the 

boundary; 
� the two bases belong to the boundary 

3. Remove the pseudo-prism (the three tetrahedra 
that constitute it) with the longest edge on the 
boundary. 



 

 

If the Euler-Poincaré formula is considered 16: 

v – e + f = 2(s – h) 

it is possible to analyze the coherence of the discussed 
method. The removal of a pseudo-prism that respects the 
hypothesis mentioned above causes the insertion of six new 
edges on the boundary, the removal of two faces (the bases) 
and the insertion of six other faces (coastal triangles): 

v – (e+6) + (f-2+6) = 2(1 – h’) 
2(1 – h) – 6 –2 + 6 = 2(1 – h’) 

2(1 – h) –2 = 2(1 – h’) 
2(1 – h – 1) = 2(1 – h’) 
2(1 – (h+1)) = 2(1 – h’) 

h’ = h + 1 

Those pseudo-prisms that meet the given hypothesis can 
be determined quite simply by adjacencies starting from e. 
The figure below shows an example of hole creation. 

 

Figure 5: Example of hole creation. 

The following pseudo-C algorithm summarizes the whole 
method. The predicate removable may or may not be 
constrained, so it has to be specified each time: 

 

1. Generation of the DT, the EMST and the EGH 
2. Construction of a heap; constraints are ON; 
3. Fill the heap with all removable tetrahedra sorted 

by the longest boundary edge 
4. Nv = number of vertices 
5. Nbv = number of vertices on the boundary 
6. Ne = number of EMST edges 
7. Nbe = number EMST edges on the boundary 
8. While ( Nbv < Nv && heap ≠ ∅) { 
9.   T = root(heap); remove T from heap 
10.   if (T is removable) { 
11.    remove T from the DT 
12.    insert each new removable tetrahedron in heap 
 } 
} 
13. constraints are OFF; if (Nbv < Nv) GOTO 3  
14. if (Nbe < Ne) { 
15.  Fill the heap with those removable tetrahedra 

whose removal adds an EMST edge to the boundary 
16.  while (Nbe < Ne) ..as the previous while 
17. if (∃ e ∈ EMST: e ∉ boundary && it is possible      

to create a hole according to e) { 

18.    Create a hole according to e 
19.    constraints are ON; GOTO 3 
  } 
} 
 

3.3. Complexity analysis 

Referring to the previous algorithm, we can analyze the 
computational complexity as follows. 
Let n be the number of vertices and t the number of 
tetrahedra: 
 
♦ (1) The determination of the DT requires O(tlogt) 

operations, and in the worst case t = O(n2) therefore the 
complexity O(n2logn) 17, 18. Given the DT, the EMST 
can be computed with O(elogn) operations, number of 
edges e = O(n2) and from it O(n2logn) 14. The 
construction of the EGH from the DT can be done 
trivially in O (tlogt) = O(n2logn) operations. 

♦ (2-3) Construction and initialization of the heap requires 
O(tlogt) = O(n2logn) operations. 

♦ (while 8-12) Removal of the heap’s root requires 
O(logt) operations and can produce at most three new 
tetrahedra to insert; the cost of this last operation is 
O(logt) operations. The whole cycle terminates in a time 
O(nlogt) = O(nlogn). 

♦ (13) As before. 
♦ (14-16) As before. 
♦ (17-18) Searching e requires O(|EMST|) = O(n) 

operations. Computation of the pseudo-prisms analyzes 
tetrahedra that are incident in the two vertices of e, from 
that O(n). 

♦ (19) The jump is done once for each hole created, so, if 
h is the number of holes in the solid, the block (3-19) 
terminates in a number of operations = O(hn2logn). 

 

The worst-case complexity is O(hn2logn). It ought to be 
considered that the worst condition in which t = O(n2) 
hardly ever occurs. Moreover, in practical cases the number 
of holes in the solid is very low. Analysis of computing 
timing during experiments, in fact, shows an average case 
complexity measurable in O(nlogn) (see Table 1, Sec. 4). 

4. Implementation 

The algorithm has been implemented in C++ with 
OpenInventor, Motif and ViewKit libraries for visualization 
and graphical interface. Further optimizations have been 
introduced. 

The main data structure explicitly stores vertices, edges 
and triangles. Tetrahedra are stored in a temporary list in the 
form of 4-tuples of vertex indexes; at the end of the 
reconstruction process this list is dismissed. Each edge is 
represented by a pair of vertex indexes whose order gives an 
orientation to the edge; in this way it is possible to compute 
the ET relation that associates all the triangles incident to 



 

each edge from a single explicitly stored triangle. Indeed, 
each triangle stores its two incident tetrahedra and, by 
adjacencies, it is possible to turn the edge around to obtain 
the ET relation in optimal time.  

The  algorithm has been tested with different data sets, 
ranging in size from a few hundreds of points to many tens 
of thousands. Surfaces have been reconstructed starting 
from uniformly and non-uniformly distributed points, and 
from convex surfaces and surfaces of solids with holes, as 
shown by the examples in Appendix 1. 

To compute the Delaunay tetrahedralization, the 
Quickhull algorithm 19,20 has been used. Extraction of the 
EMST starting from the DT has been implemented 
according to Prim’s 14 method. Computation of the extended 
Gabriel Hypergraph has been implemented by the direct use 
of the definition and considering all the information given 
by the DT; specifically, the empty ball test only needs to 
analyze the adjacent vertices as follows: 

 
• The smallest sphere for a triangle t is empty if, for each 

tetrahedron with face t, the vertex that doesn’t belong to 
t is not in the sphere;  

• The smallest sphere for an edge e is empty if, for each 
edge that shares a vertex with e, the vertex that doesn’t 
belong to e is not in the sphere; 

 

Simple observations have made it possible to implement 
the computation of the EGH in such a way that it terminates 
in a time that is proportional to the number of tetrahedra. 

The following table shows how the required computing 
time grows with the growth of the number of input points. 
Experiments have been done on a PC Pentium III 450 MHz 
running the Linux 2.2.12 operating system and equipped 
with 128M RAM memory. Reported timings are expressed 
in seconds, and the time required to load the point set and 
save the VRML file is not included. 

 
Number of points Computing seconds 
256 0 
512 0 
1024 1 
2048 3 
4096 5 
8192 13 
16384 23 
32768 41 
65536 83 

 
Table 1: Computing seconds required to reconstruct a solid 
without holes. Input and output times are not included. 

 

The following images show a comparison of some 
traditional sculpturing methods and the constrained method 
proposed in this paper. Implementation of the other methods 
was quite simple; in fact, all that is required is to modify the 
function that associates to each tetrahedron the key for 
sorting the heap and removing the test that imposes the 
constraints. 

 

(a) 

 

(b)  

 

(c) 

 

(d)  

Figure 6. Example: Minimal Area Change method (a), γ-indicator 
(b), Maximum Edge Length without constraints (c), EMST and 
EGH constrained Maximum Edge Length (d). 

5. Conclusions 

The proposed algorithm represents a useful tool for surface 
reconstruction from a sampled point set of which nothing 
else but the point position is known. When additional 
information is available to the user, it is usually possible to 
obtain better results by way of specific methods that take 
into account that information. 

The innovation introduced by this method is the 
simultaneous use of multiple criteria, which overcomes the 
limits of each method considered separately and, at the same 
time, takes advantage of all their potentialities. Specifically, 
the problem has been approached in a more general way by 
defining the reconstructed surface not only as a 2-manifold 
interpolating mesh, but also taking into account some 
desired shape properties. Consequently, the reconstruction 
turns out to be aesthetically pleasant in most practical cases. 
Two important sculpturing characteristics have been 
exploited: efficiency, with regard to required computation 
time, and the possibility of maintaining a coherent data 
structure at each step. The Euclidean Minimum Spanning 



 

 

Tree has been used because it provides a good surface 
description. Moreover, the notion of Extended Gabriel 
Hypergraph has been introduced, which represents a valid 
triangle-oriented description of the surface to reconstruct. 

We foresee the main applications of this tool will be 
developed in medical analysis and Reverse Engineering. A 
priori knowledge of some characteristics of the object to 
reconstruct can be used to improve reconstruction in a 
particular application area. Other future work may lie in 
method extension to the reconstruction of opened surfaces, 
simplification of the reconstructed geometric model, and 
finally the study of parallelization criteria for handling very 
large point sets. 
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Appendix 1. 

 

 
Figure 7: Venus – 15000 points 

 

Figure 8: Ball Joint – 30000 points 
 

 

Figure 9: Bunny – 15000 points, Rabbit – 7600 points 

 

 

 Figure 10: Handphone – 44000 points 
 

 Figure 11: Teeth – 29500 points 
 

 Figure 12: Tea pot  – 7300 points 

 


