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Abstract. The paper investigates the use of Machine Learning (ML) to support experts 
validating skos:exactMatch links. It trains ML techniques provided by RapidMiner with 
manually validated links and shows how to use the obtained predictive models for sav-
ing expert efforts. The obtained results are preliminary but encouraging: the trained 
predictive models reduce up to 70% the number of manual checking required from ex-
perts, leaving only 10% of the wrong links unnoticed. Cutting the 70% of the expert 
burden is crucial, especially when dealing with the validation of large sets of links. 
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1 Introduction 

Artificial Intelligence (AI) is a multidisciplinary, long-standing research field which is 
recently having a hype. It promises to solve the unprogrammable tasks, to reduce the 
time required to program complex solutions, to make products more customizable. In 
particular, the advancement of Machine Learning (ML) is producing a paradigm-shift 
in solving problems which moves the focus from the logic of a solution to the observa-
tion of examples1. 
Following the belief that ML tools will soon become as disruptive as spreadsheets in 
everyday activities, this paper investigates the reuse of well-known ML technology to 
ease manual validation of automatically generated links. In general, the expert valida-
tion is a painstaking, error-prone and tedious activity. Any support aimed at easing the 
burden of validation is precious. 
This paper starts from the validation carried out in the eENVPlus project (CIP-ICT-
PSP No. 325232). In eENVPlus, domain experts were required to validate automati-
cally generated skos:exactMatch links between the thesauri included in Linked Thesau-
rus Framework for the Environment (LusTRE)[1]. Distinguishing between correct and 
incorrect skos:exactMatch is particularly important in LusTRE, as user navigations and 
service results are enriched with translations and concepts which are reachable through 
these links [2], and the wrong skos:exactMatch links would bring to wrong enrich-
ments. This paper trains state-of-art ML techniques made available by RapidMiner with 
a subset of manually validated links, and it shows how the obtained predictive models 
can reduce the number of manual checks required during the validation.  
                                                        
1 https://developers.google.com/machine-learning/crash-course/ml-intro 
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2 Related Work 

Link correctness is addressed by a certain number of works, most of those focus on 
owl:sameAs links. Raad et al. [3] use network metrics to check the correctness of 
owl:sameAs. CEDAL [4] provides a time-efficient method to detect inconsistent 
owl:sameAs arising from transitive closure, Papaleo et al. [5] detect logical conflicts of 
owl:sameAs links in RDF data. Paulheim [6] exploits RapidMiner multidimensional 
outlier detections to identifying wrong links between datasets. 

Besides the works aiming at automatically identify wrong owl:sameAs, there are 
crowdsourcing-based methodologies to share the validation efforts on a larger group of 
experts (see [7] and [8]). None of the previous specifically address skos:exactMatch 
links, nor they learn from data of previous validations. At the best of our knowledge, 
Rico et al. [9] have proposed the most related approach. They exploit binary classifiers 
to check wrong mapping in the data extraction from Wikipedia to DBpedia. However, 
they rely on features which are not directly applicable to the skos:exactMatch links 
considered in this paper. 

3 LusTRE and Link Validation 

The eENVplus project has spent considerable efforts reviewing the available environ-
mental thesauri and checking those not yet available as linked data [10]. As a result of 
such a review, we have designed LusTRE [1], in which ThiST [11] and EARTh [12] 
are published as Linked Data using the Simple Knowledge Organization System 
(SKOS) and connected to popular thesauri such as GEMET, AGROVOC [13] and 
EUROVOC.  
LusTRE provides different kinds of links between the concepts, as the concepts belong-
ing to separate thesauri might be equivalent (skos:exactMatch), almost equivalent 
(skos:closeMatch), more specific (skos:broadMatch), less specific (skos:narrow-
Match), or related (skos:relatedMatch). 
The links are generated with a two-step procedure. Firstly, SILK [14] 
(http://silkframework.org/) is applied to discover new links, and then the SILK results 
are validated by domain experts to verify their accuracy. SILK discovers candidate 
links relying on user-parameterized similarity comparison. For LusTRE, a link between 
two concepts is added if the similarities between their preferred labels (i.e., skos:pre-
fLabel), or alternative labels/synonyms (i.e., skos:altLabel) are greater than a given 
threshold. The set of discovered candidate links are then provided to experts in the form 
of spreadsheets (see Fig. 1). In the spreadsheet, each link is represented as a row with 
the URI of the mapped concepts (subject and object of the link are in columns s and o 
respectively), with their preferred labels (columns sPrefLabel and oPrefLabel), their 
broader (columns sBT and oBT) and related concepts (columns sRT and oRT). The 
‘NaN’ value appears in correspondence of not available broader or related concepts; 
multiple broader and related terms for the same concept are separated by the symbol 
‘|’. Concept definitions are not included as they were not available for most of the con-
sidered thesauri. 
Considering the spreadsheet, the experts can catch the meaning of linked concepts, so 
that they can confirm if each link is a correct skos:exactMatch. If needed, they can get 
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more information about the represented concepts resolving their links. Experts might 
also reject the links if wrong, or suggest to downgrade the links to another kind of 
matching (e.g., skos:closeMatch, skos:broadMatch, skos:relatedMatch). 

 
Fig. 1. Excerpt of the validation spreadsheet proposed to the experts  

The following section introduces how we applied the ML techniques to distinguish be-
tween correct and incorrect skos:exactMatch. In particular, we consider the set of links 
from ThIST to EARTh, Agrovoc, DBpedia, Eurovoc, which overall includes 4236 
links. 

4 Methods and Experiment Setting 

We model the task of distinguishing between correct and incorrect skos:exactMatch as 
a binary classification. Our binary classification labels links into two classes: Exact-
Match indicating the correct skos:exactMatch and Not ExactMatch which includes 
the erroneous links as well as all the other SKOS mappings (e.g., skos:closeMatch, 
skos:broaderMatch).  
To train the classifier, we need to select a set of features characterizing the links. As 
discussed, experts have assessed the correctness of links relying on their knowledge 
and also the annotations provided in the spreadsheet. The expert knowledge is not easily 
representable, but we can elaborate on the annotations (i.e., preferred label, broader and 
related terms) to compare the context in which the concepts are defined.  

4.1 Features 

We consider three types of features: the presence of the annotations, text similarity and 
composed text similarity applied to the annotations. 
We deploy two text similarity metrics: the nhammingSim, which is the hamming nor-
malized similarity available in the package textdistance2, and wmdistance, which is the 
cosine on the Word2Vec embedding [15] implemented in the gensim package3. In par-
ticular for the latter, we use a third-party word2vec trained model4 which includes word 

                                                        
2 https://pypi.org/project/textdistance/ 
3 https://radimrehurek.com/gensim  
4 https://drive.google.com/file/d/0B7XkCwpI5KDYNlNUTTlSS21pQmM/ 
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vectors for a vocabulary of 3 million words and phrases trained on roughly 100 billion 
words from a Google News dataset. 
As observable in Fig. 1, many of the concepts involved in the links have multiple 
broader and related concepts (e.g., Arctic region and Denmark in row 62), and their 
preferred labels, their broader and related terms are often composed labels (e.g., Arctic 
region, glacial rebound). To deal with multiple and composed labels, we split and flat-
ten them in sets of single words and we apply specific functions5. Given two sets of 
single words indicated as X and Y (e.g., for the subject’s broader in row 62, X={Arctic, 
Region, Denmark}) and one of the text-similarity metrics indicated as sim, we define 
the functions (1) and (2). 

!"#(%, ', ()*) = *"#-,.(()*/#-, 0.1) (1) 

23**)45!"#(%, ', ()*) = ∑ *"#.- (()*/#-, 0.1) (2) 

The function Max (1) returns the maximum pairwise similarity. The function Summing-
Max (2) sums the maximum similarity for each xi. 
In this way, we get 8 features for each kind of annotation. For example, considering 
broader terms, we have: sBT_missing and oBT_missing which are true when the subject 
and the object broader terms are not available; BT_wmdistance, BT_Mwmdistance, 
BT_SMwmdistance, which are obtained comparing the concepts’ broader terms by ap-
plying wmdistance directly and in the functions Max and SummingMax; 
BT_nhammingSim, BT_MnhammingSim, BT_SMnhammingSim which are obtained by 
applying nhammingSim alone and in the functions Max and SummingMax. The proce-
dure adopted to prepare the overall 24 features (8 for preferred labels, 8 for broader 
terms and 8 for related terms) are available as a Jupyter Python Notebook6. 

4.2 Predictive Models and Results 

This paper investigates the applicability of ML for validating skos:exactMatch links, 
not the definition of new ML algorithms. As a consequence, instead of implementing 
the classifiers from scratch, we decided to use the RapidMiner Framework [16]. 
RapidMiner is an extensible and open source ML framework which offers a collection 
of state-of-the-art ML algorithms. The RapidMiner Studio provides an intuitive GUI 
which impressively reduce the efforts required to define and compare distinct ML tech-
niques. Exploiting RapidMiner, we build six predictive models (M1-M6), in which, we 
trained three classifiers (i.e., a Decision Tree for M1 and M4, a Gradient Boosted trees 
for M2 and M5, a Deep Learning network for M3 and M6). We use a training set that 
contains 172 examples out of 4236 (half exactMatch and half Not exactMatch) using 
all the negative examples in a 10-fold cross-validation. In the training of M1, M2, M3, 

                                                        
5 This strategy works for languages such as English, Italian, Spanish which uses 

spaces/hyphen for dividing compound words. It may not work for German and Dutch 
where compound words are represented differently. 

6 https://github.com/riccardoAlbertoni/LinkCorrectness/blob/master/PreparingFea-
turesForLinksetCorrectness.ipynb 
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we consider both the missing attributes and similarity features, for the training of M4, 
M5, M6, we consider only the similarity features. 

 

Table 1. Classification performance. 

Table 1 shows the classification performance of the models tested on the whole set of 
links. All the models offer very good precision for ExactMatch, acceptable and good 
recall for ExactMatch and Not ExactMatch, but very low precision for Not Exact-
Match. The models are not good enough for being used as a replacement of experts. 
However, we can use them for reducing the number of links the experts need to validate 
manually. We can ask the experts to doublecheck only the set of links classified as Not 
ExactMatch instead of the whole set of links. For example, if we apply the model M5, 
experts would need to focus on only the 30.76% of the initial links (i.e., 1333 instead 
of 4236 links) getting the chance to find the 89.53% of the wrong skos:exactMatch. 
This strategy seems quite advantageous: it would provide an error rate of about 10%, 
reducing the number of manual checking of 70%. Similar advantages can be obtained 
using the other models. 

5 Conclusion 

This paper shows that predictive models might ease the validation of skos:exactMatch 
correctness reducing the number of links to doublecheck manually. The results are pre-
liminary but promising and deserve further investigations. We have not elaborated on 
which is the better similarity or ML technology to apply, but we have shown that even 
a quick and dirty approach can help to reduce the validation efforts. Each time one of 
the thesauri is updated in LusTRE, the links need to be revalidated, and there is room 
for applying the above predictive models. Considering 7 seconds on average for check-
ing a link in LusTRE, the proposed models can make the maintainer spend two hours 
and half instead of more than eight hours. Perhaps, it is not a life-changing improvement 
but it eases the work of maintainers, and it can result extremely useful when dealing 
with a greater number of link. As future work, we want to investigate if other similarity 
measures would have worked better, if there is a minimal number of wrong and correct 
links to ensure acceptable performances, and to evaluate the applicability of such an 
approach in contexts other than LusTRE.  
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